Math, asked by baskarm676, 9 months ago

Solve the following system of equations by elimination method
2x+3y = 4,3x-y=-5​

Answers

Answered by jankidevi2121
0

Answer:

Step-by-step explanation:

2x+3y=4

3x*3-3*y=-5*3

2x+3y=4

9x-3y=-15

11x=-11

X=-11/11

X=-1

Put the value of x in eq.no 1

2x+3y=4

2*-1+3y=4

-2+3y=4

3y=4+2

3y=6

Y=6/3

Y =2

Answered by BrainlyRuby
1

\Large\underline\mathbb\blue{ANSWER}

 \tt{ 2x + 3y = 4...(i)} \\  \tt{3x - y =  - 5 ...(ii)}

After making coefficient of y equal,

 \tt{2x + 3y = 4...(iii)}\\  and   \\   \tt{9x  - 3y =  - 45 ...(iv)}

Subtracting equation (iv) from equation (iii),

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{(9x + 3y) - (2x + 3y) =  - 45 - 4}  \\ \\  \implies \tt{2x +  \cancel{3y} - 9x  -  \cancel{ 3y} = 49}  \\  \\ \implies \tt{ - 7x =  - 49} \\  \\   \implies \tt{x =  \frac{  \cancel{-} 49}{  \cancel{-} 7} }  \\  \\  \implies \boxed{ \tt{ \pink{x = 7}}}

Substituting the values in equation (i),

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{2x + 3y = 4}  \\  \\  \implies \tt{2( - 7)} + 3y = 4 \\  \\  \implies \tt{ - 14 + 3y = 4} \\  \\  \implies \tt{3y = - 18}   \\  \\   \implies\tt{y =  \frac{ - 18}{3} }  \\  \\  \implies \boxed{ \pink{ \tt{y =  - 6}}}

hope it's helpful

Similar questions