Math, asked by MickeyLuvsMinnie, 5 months ago

solve the following system of equations by elimination method x+y=a-b
ax-by=a²+b² ​

Answers

Answered by mathdude500
1

Question :-

Solve the following system of equations by elimination method :-

\sf \:  x+y=a-b

\sf \:  ax-by=a²+b²

___________________________________________

Required Answer:-

\sf \:  ⟼x = a

\sf \:  ⟼y =  -  \: b

Explanation :-

\sf \: x+y=a-b \:  ⟼ \: (1)

\sf \:  ax-by=a²+b² \: ⟼ \: (2)

Multiply equation (1) by b, we get

\sf \: \: bx + by = ab \:   -  {b}^{2}  ⟼ \: (3)

\begin{gathered}\bf\red{Now,}\end{gathered}

On Adding equation (2) and (3), we get

\sf \:  ⟼ax   \: +  \: bx \: =  {a}^{2}  + ab

\sf \:  ⟼ \: x(a + b) = a(a + b)

\sf \:  ⟼ \: x = a \: \sf \:  ⟼ \: (4)

\begin{gathered}\bf\red{So,}\end{gathered}

On substituting the value of x in equation (1), we get

\sf \:  ⟼ \: a \:  +  \: y = a \:  -  \: b

\sf \:  ⟼ \: y \:  =  \:  -  \: b \: \sf \:  ⟼ \: (5)

\begin{gathered}\bf\blue{Hence} \end{gathered}

\large{\boxed{\boxed{\tt{{x =  \: a}}}}}

\large{\boxed{\boxed{\tt{{y \:  =  \:  -  \: b}}}}}

____________________________________________

Similar questions