Math, asked by sivamurugan228, 29 days ago

solve the following systems of linear equations by cramers rule x+y+z=2,2x+4y+2z=4,x-2y-z=0​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

★ Given equations are

  • x + y + z = 2

  • 2x + 4y + 2z = 4

  • x - 2y - z = 0

★ The matrix representation is

\rm :\longmapsto\:A = \begin{gathered}\sf \left[\begin{array}{ccc}1&1&1\\2&4&2\\1&-2& - 1\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf B=\left[\begin{array}{c}2\\4\\0\end{array}\right]\end{gathered}

\rm :\longmapsto\:\begin{gathered}\sf X=\left[\begin{array}{c}x\\y\\z\end{array}\right]\end{gathered}

Such that,

\rm :\longmapsto\:AX=B

Now,

Consider,

\rm :\longmapsto\: |A| = \begin{gathered}\sf \left | \begin{array}{ccc}1& 1&1\\ 2&4&2\\1& - 2& - 1\end{array}\right |\end{gathered}

\:  \: \rm= \:  \:1( - 4 + 4) - 1( - 2 - 2) + 1( - 4 - 4)

\:  \: \rm= \:  \:1(0) - 1( -4) + 1( -8)

\:  \: \rm= \:  \:4 - 8

\:  \: \rm= \:  \: - 4

\rm :\implies\: |A|  \:  \ne \: 0

★ It implies, System of equations is consistent having unique solution.

Consider,

\rm :\longmapsto\: D_1= \begin{gathered}\sf \left | \begin{array}{ccc}2& 1&1\\ 4&4&2\\0& - 2& - 1\end{array}\right |\end{gathered}

\:  \: \rm= \:  \:2( - 4 + 4) - 1( - 4 - 0) + 1( - 8  -  0)

\:  \: \rm= \:  \:2(0) - 1( - 4) + 1( - 8)

\:  \: \rm= \:  \:4 - 8

\:  \: \rm= \:  \: - 4

Consider,

\rm :\longmapsto\: D_2 = \begin{gathered}\sf \left | \begin{array}{ccc}1& 2&1\\ 2&4&2\\1& 0& - 1\end{array}\right |\end{gathered}

\:  \: \rm= \:  \:1( - 4 - 0) - 2( - 2 - 2) + 1(0 - 4)

\:  \: \rm= \:  \:1( - 4) - 2( -4) + 1( - 4)

\:  \: \rm= \:  \: - 4 + 8 - 4

\:  \: \rm= \:  \: 0

Consider,

\rm :\longmapsto\: D_3= \begin{gathered}\sf \left | \begin{array}{ccc}1& 1&2\\ 2&4&4\\1& - 2& 0\end{array}\right |\end{gathered}

\:  \: \rm= \:  \:1(0 + 8)  - 1(0 - 4) + 2( - 4 - 4)

\:  \: \rm= \:  \:1(8)  - 1( - 4) + 2( -8)

\:  \: \rm= \:  \:8 + 4 - 16

\:  \: \rm= \:  \: - 4

Therefore,

\bf :\longmapsto\:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 4}{ - 4} = 1

\bf :\longmapsto\:y = \dfrac{D_2}{ |A| }  = \dfrac{0}{ - 4} = 0

\bf :\longmapsto\:z = \dfrac{D_3}{ |A| }  = \dfrac{ - 4}{ - 4} = 1

Similar questions