Math, asked by sushmita1233, 11 months ago

Solve the following systems of simultaneous linear equation by the elimination method
x/6 = y-6
3x= 1+y


pls solve step by step​

Answers

Answered by AbhijithPrakash
68

Answer:

\dfrac{x}{6}=y-6,\:3x=1+y\quad :\quad y=\dfrac{109}{17},\:x=\dfrac{42}{17}

Step-by-step explanation:

\begin{bmatrix}\dfrac{x}{6}=y-6\\ 3x=1+y\end{bmatrix}

\mathrm{Arrange\:equation\:variables\:for\:elimination}

\begin{bmatrix}\dfrac{1}{6}x-y=-6\\ 3x-y=1\end{bmatrix}

\mathrm{Multiply\:}\dfrac{1}{6}x-y=-6\mathrm{\:by\:}18:\quad 3x-18y=-108

\begin{bmatrix}3x-18y=-108\\ 3x-y=1\end{bmatrix}

  3x-y=1

-

  \underline{3x-18y=-108}

  17y=109

\begin{bmatrix}3x-18y=-108\\ 17y=109\end{bmatrix}

\mathrm{Solve}\:17y=109\:\mathrm{for}\:y

17y=109

\mathrm{Divide\:both\:sides\:by\:}17

\dfrac{17y}{17}=\dfrac{109}{17}

\mathrm{Simplify}

y=\dfrac{109}{17}

\mathrm{For\:}3x-18y=-108\mathrm{\:plug\:in\:}\quad \:y=\dfrac{109}{17}

\mathrm{Solve}\:3x-18\cdot\dfrac{109}{17}=-108\:\mathrm{for}\:x

3x-18\cdot \dfrac{109}{17}=-108

\mathrm{Add\:}18\cdot\dfrac{109}{17}\mathrm{\:to\:both\:sides}

3x-18\cdot \dfrac{109}{17}+18\cdot \dfrac{109}{17}=-108+18\cdot \dfrac{109}{17}

\mathrm{Simplify}

3x=\dfrac{126}{17}

\mathrm{Divide\:both\:sides\:by\:}3

\dfrac{3x}{3}=\dfrac{\dfrac{126}{17}}{3}

\mathrm{Simplify}

x=\dfrac{42}{17}

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=\dfrac{109}{17},\:x=\dfrac{42}{17}

Attachments:
Answered by Anonymous
72

\dfrac{x}{6} = y - 6

3x = 1 + y

_________ [GIVEN EQUATIONS]

____________________________

» Refer the Attachment.

____________________________

x = \dfrac{42}{17}

y = \dfrac{109}{17}

____________ [ANSWER]

Attachments:
Similar questions