solve the following : tan theta + cot theta = 2
Answers
Answered by
1
Step-by-step explanation:
tantheta+cottheta =2,
tantheta + (1/tantheta) =2;
tan squared theta +1 = 2tantheta;
tansquaredtheta -2tantheta +1 =0;
(tantheta -1)square =0;
So, tan theta = 1
theta = pi/4 + pi*n, n belongs to natural numbers.
Now, dealing with
tan squared theta - cot squared theta =
(tantheta+cottheta)(tantheta-cottheta)=
2*(tantheta - 1/tantheta) =
2*(tan squared theta -1)/tantheta =
-2*(1-tansquaredtheta)/tantheta=
-2*2*tantheta/(tantheta*tan2theta)=
-4/tan2theta =
-4/tan(2*pi/4 + 2*n*pi) =
-4/tan(pi/2 + 2*n*pi) = -4/(infinity) = 0
Or simply, tan theta =1, as found earlier.
So, tan squared theta - cot squared theta =
(tan theta) square - 1/(tan theta) square =
(1)square - (1)square = 1–1= 0.
hope this helps
please mark me as BRAINLIEST
Similar questions