Math, asked by ajeetpathak86, 4 months ago

solve the following
 \frac{x}{2}  -  \frac{x}{3}  +   \frac{x}{4}  = 6

Answers

Answered by XxmiragexX
44

 \huge \mid{ \underline{ \overline { \bold{ ✯ \red{AnSwer}✯}}}} \mid

 \frac{x}{2}  -  \frac{x}{3}  +  \frac{x}{4}  = 6 \\  \\  \implies  \frac{6x - 4x + 3x}{12}  = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \implies  6x - 4x + 3x = 6 \times 12 \\  \\  \implies 5x = 72  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \\  \\   \implies  \boxed{x =  \frac{72}{5}}  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, value of x is 72/5 or 14.4

Answered by Anonymous
35

AnsweR :-

: \implies \sf \frac{x}{2} - \frac{x}{3} + \frac{x}{4} = 6 \\  \\: \implies \sf  \frac{6x - 4x + 3x}{12}  = 6 \\  \\: \implies \sf 6x - 4x + 3x = 6 \times 12 \\  \\: \implies \sf 5x = 72 \\  \\: \implies \boxed{ \sf x =  \frac{72}{5}}

VerificatioN :-

: \implies \sf \frac{ \frac{72}{5} }{2} - \frac{ \frac{72}{5} }{3} + \frac{ \frac{72}{5} }{4} = 6 \\  \\ : \implies \sf \frac{72}{10}  -  \frac{72}{15}  +  \frac{72}{20}  = 6 \\  \\ : \implies \sf \frac{432 - 288 + 216}{60} = 6 \\  \\: \implies \sf \frac{360}{60} = 6 \\  \\: \implies\boxed{ \sf 6 = 6}

  • LHS = RHS

  • Hence answer is correct
Similar questions