Solve the following
Answers
Given integral is
Let assume that
We know,
So, using this property of definite integrals, we get
On adding equation (1) and (2), we get
We know,
So, using this, we get
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
ADDITIONAL INFORMATION
Answer:
What is integral tan x / (1 + m^2 tan^2 x) dx from 0 to pi/2?
I=∫π20tanx1+m2tan2xdx
Convert Everything into sinx and cosx
I=∫π20sinxcosx1+m2sin2xcos2xdx
I=∫π20sinxcosxcos2x+m2sin2xdx
Now simply take sin2x=t
That would also imply cos2x=1−t
Taking Derivative of Both Sides…
[mat...
Let I=∫π20tan(x)1+m2tan2(x)dx
=∫π20sin(x)cos(x)1+m2sin2(x)cos2(x)dx
=∫π20sin(x)cos(x)cos2(x)+m2sin2(x)dx
=∫π20sin(x)cos(x)cos2(x)+m2(1−cos2(x))dx
=∫π20sin(x)cos(x)m2+(1−m2)cos2(x)dx
Let cos(x)=y
⟹−sin(x)dx=dy
At x=0 , y=1
and x=π2,y=0
Substituting above value in I , we get,
I=∫01−ym2+(1−m2)y2dy
=∫102(1−m2)y2(1−m2)(m2+(1−m2)y2)dy
=∫1012(1−m2)(m2+(1−m2)y2)d(m2+(1−m2)y2)
=12(1−m2)ln(m2+(1−m2)y2)∣∣∣10
=12(1−m2)ln(m2+(1−m2))−12(1−m2)ln(m2)
=−11−m2ln(m)
⟹I=1m2−1ln(m)
please drop some ❤️❤️❤️
Step-by-step explanation:
please f-o-l-l-o-w m-e bro please