Math, asked by 12ahujagitansh, 20 days ago

Solve the following

 \int \:  \sqrt{ {e}^{x}  - 1}  \: dx \:


Answers

Answered by rnyadav1611
12

Step-by-step explanation:

please mark as brainlest

Attachments:
Answered by mathdude500
26

\large\underline{\sf{Solution-}}

 \rm \: \displaystyle\int\rm  \sqrt{{e}^{x} - 1}  \:dx \:  \\

To evaluate this integral, we use method of Substitution.

So, Substitute

 \red{\rm \:  \sqrt{{e}^{x} - 1}  \:  =  \: y} \\

 \red{\rm \: {e}^{x} - 1 \:  =  \:  {y}^{2} }

So, on differentiating both sides w. r. t. x, we get

 \red{\rm \: {e}^{x} \:  =  \:2y \dfrac{dy}{dx} } \\

 \red{\rm \: dx \:  =   \dfrac{2y}{{e}^{x}} \: dy } \\

 \red{\rm \: dx \:  =  \:\dfrac{2y}{ {y}^{2} + 1 }  \: dy} \\

So, on substituting these values, in above integral, we get

\rm \: =  \:\displaystyle\int\rm  y \times \frac{2y}{ {y}^{2}  + 1}  \: dy \\

\rm \: =  \:2 \: \displaystyle\int\rm \frac{ {y}^{2} }{ {y}^{2}  + 1}  \: dy \\

\rm \: =  \:2 \: \displaystyle\int\rm \frac{ {y}^{2}  + 1 - 1}{ {y}^{2}  + 1}  \: dy \\

\rm \: =  \:2 \: \displaystyle\int\rm \bigg[1 - \dfrac{1}{ {y}^{2}  + 1} \bigg]  \: dy \\

\rm \: =  \:2(y -  {tan}^{ - 1}y) + c \\

\rm \: =  \:2( \sqrt{{e}^{x} - 1}  -  {tan}^{ - 1} \sqrt{{e}^{x} - 1} ) + c \\

Hence,

\rm \: \displaystyle\int\rm  \sqrt{{e}^{x} - 1} dx=  \:2( \sqrt{{e}^{x} - 1}  -  {tan}^{ - 1} \sqrt{{e}^{x} - 1} ) + c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions