Math, asked by suriyad578, 9 months ago

solve the following trignometric equation a]sinФ+tanФ-sin2Ф=0

Answers

Answered by ramanjotkour1234
1

Answer:

okay here is your answer check below attached file and do follow me mark as brainlist answer thank yo my answer

Step-by-step explanation:

We can solve this 2nd order ODE  by substituting for the variable  x.

           (1+x²)² y'' + 2 x (1+x²) y' + 4 y = 0       ---- (1)

Let  x = tan Ф,  dФ/dx = cos²Ф     ,    x = 0, when Ф = 0.

          dy/dx = dy/dФ * dФ/dx = dy/dФ * cos²Ф     ---(2)

          d²y/dx² = d/dФ (dy/dФ * cos²Ф)  * dФ/dx

                      = [ cos²Ф * d²y/dФ² - 2 cosФ sinФ* dy/dФ] * cos²Ф 

                      = cos⁴Ф * d²y/dФ² - 2 cos³Ф sinФ * dy/dФ   ---(3)

So (1) becomes:

         d²y/dФ² - 2 tanФ dy/dФ + 2 tanФ sec²Ф *dy/dФ * cos²Ф + 4 y = 0

         d²y/dФ² = - 4 y       --- (4)

This is the equation of motion for SHM... with ω = √4 = 2

    Let   y = A sin ωФ = A Sin2Ф         , Assuming Ф = 0 = Ф₀   for y = 0

         If the initial conditions are different we can have :  y = A sin (Ф+Ф₀).

     x = tanФ    So  cos2Ф = (1-x²)/(1+x²),   sin2Ф = 2x/(1+x²)

Solution:   y =  2 A x /(1+x²)          ---- (4)

We can also verify the solution by differentiating the above :

            y' = (1-x²)/(1+x²)               .    y'' = (x² - 3) 2x /(1+x²)³

Read more on Brainly.in - https://brainly.in/question/1111570#readmore

Answered by kiranppalled
0

Answer:

Step-by-step explanation:so sinФ+sinФ/cosФ - 2sinФcosФ

by LCM,

sinФcosФ + sinФ- 2sinФcosФ/cosФ

sinФ-sinФcosФ/cosФ

sinФ(1-cosФ)/cosФ

therefore, we can write as tanФ(1-cosФ)

Similar questions