Solve the following trigonometric equation- 3tan²x-2sinx=0
Answers
Answered by
0
3tan²x-2sinx=0
3(sin²x/1-sin²x)-2sinx=0 {tan²x=sin²x/1-sin²x}
= 3sin²x/1-sin²x=2sinx
= 1/1-sin²x=2sinx/3sinx
= 1-sin²x=3/2
= -sin²x=3/2-1
= sin²x=1/2
= sinx=√1/2
3(sin²x/1-sin²x)-2sinx=0 {tan²x=sin²x/1-sin²x}
= 3sin²x/1-sin²x=2sinx
= 1/1-sin²x=2sinx/3sinx
= 1-sin²x=3/2
= -sin²x=3/2-1
= sin²x=1/2
= sinx=√1/2
Similar questions