Math, asked by rsnkfamily, 11 months ago

solve the following with solutions with clear explanation

Attachments:

Answers

Answered by raunakgg22
1

Answer:

sin+cos=p

tan+cot=q

sin/cos+cos/sin=q

sin2+cos2/sin.cos(sin2+cos2+2sin.cos-1)

1/sin.cos(2sin.cos)

=2

Answered by BrainlyConqueror0901
3

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore q({p}^{2}-1)=2 }}

{\bold{\therefore \sqrt{1-sin\:100\degree}\times sec\:100\degree=1 }}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \bold{For \: first \: question : }  \\  \\  \underline \bold{Given : } \\  \implies sin  \theta + cos  \theta = p \\  \\  \implies  \tan \theta +  \cot \theta = q \\  \\  \underline \bold{To \: find : } \\  \implies q( {p}^{2}  - 1) =?

 \implies  \tan \theta  +  \cot \theta = q \\  \\  \implies  \frac{sin \theta}{cos \theta} +  \frac{cos  \theta}{sin \theta}   = q \\  \\  \implies  \frac{ {sin}^{2} \theta +  {cos}^{2}  \theta }{sin  \theta\times  cos \theta}  = q \\  \\  \implies q =  \frac{1}{ sin \theta \times  cos \theta}  \\  \\  \bold{For \: finding \: values : } \\  \implies q( {p}^{2}  - 1) \\  \\  \implies  \frac{1}{sin \theta \times  cos \theta}( ( {sin \theta +  cos \theta)}^{2}  - 1) \\  \\  \implies  \frac{1}{sin \theta  \times  cos \theta}   ({sin}^{2}  \theta +  {cos}^{2}  \theta + 2 \: sin \theta  \times  cos \theta -  1 )\\  \\  \implies  \frac{1}{sin \theta \times  cos \theta} (1 + 2 \: sin \theta  \times  cos \theta - 1) \\  \\  \implies  \frac{1}{sin \theta  \times  cos \theta}  \times 2 \: sin \theta  \times  cos  \theta \\  \\  \implies  \bold{2}

 \bold{For \: second \: question : } \\  \implies  \sqrt{1 -  {sin}^{2}100 \degree }  \times sec \:  100 \degree \\   \\   \bold{ cos \: theta =  \sqrt{1 - sin ^{2}  \theta} } \\  \\  \implies  cos  \: 100 \degree \times sec  \: 100 \degree \\  \\  \implies \frac{ 1 }{ \cancel{sec \:100 \degree}}  \times  \cancel{sec \:100 \degree} \\  \\   \bold{\implies 1}

Similar questions