Math, asked by Anonymous, 1 day ago

Solve the given attachment!!

No spam!! ​

Attachments:

Answers

Answered by sunitapatil25061989
1

Answer:

option (3)

Step-by-step explanation:

Please mark as brain list...

Answered by mathdude500
16

Given Question :-

Find the value of

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}\bigg[1 + \dfrac{1}{a_1} \bigg]\bigg[1 + \dfrac{1}{a_2} \bigg] -  -  -  - \bigg[1 + \dfrac{1}{a_n} \bigg]

\rm \:a_n = n(a_{n - 1} + 1)  \: for \: n \geqslant 2\: and \: a_1 = 1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a_1 = 1

and

\rm :\longmapsto\:a_n = n(a_{n - 1} + 1)

For n = 2, we get

\rm :\longmapsto\:a_2 = 2(a_{1} + 1)

\rm \implies\:a_1 + 1 = \dfrac{a_2}{2}

For n = 3, we get

\rm :\longmapsto\:a_3 = 3(a_{2} + 1)

\rm \implies\:a_2 + 1 = \dfrac{a_3}{3}

.

.

.

.

For n = n + 1, we get

\rm :\longmapsto\:a_{n + 1} = (n + 1)(a_{n} + 1)

\rm \implies\:a_n + 1 = \dfrac{a_{n + 1}}{n + 1}

Now, Consider

\rm :\longmapsto\:\bigg[1 + \dfrac{1}{a_1} \bigg]\bigg[1 + \dfrac{1}{a_2} \bigg] -  -  -  - \bigg[1 + \dfrac{1}{a_n} \bigg]

can be rewritten as

\rm \:  =  \: \bigg[\dfrac{a_1 + 1}{a_1} \bigg]\bigg[\dfrac{a_2 + 1}{a_2} \bigg] -  -  -  - \bigg[\dfrac{a_n + 1}{a_n} \bigg]

\rm \:  =  \: \bigg[\dfrac{a_2}{2} \bigg]\bigg[\dfrac{a_3}{3a_2} \bigg] -  -  -  - \bigg[\dfrac{a_{n + 1}}{(n + 1)a_n} \bigg]

\rm \:  =  \: \dfrac{a_{n + 1}}{2.3.4 -  -  -  - (n + 1)}

\rm \:  =  \: \dfrac{(n + 1)(a_n + 1)}{2.3.4 -  -  -  - n(n + 1)}

\rm \:  =  \: \dfrac{a_n + 1}{2.3.4 -  -  -  - n}

\rm \:  =  \: \dfrac{a_n + 1}{n!}

\rm \:  =  \: \dfrac{a_n}{n!}  + \dfrac{1}{n!}

\rm \:  =  \: \dfrac{n(a_{n - 1} + 1)}{n!}  + \dfrac{1}{n!}

\rm \:  =  \: \dfrac{a_{n - 1} + 1}{(n - 1)!}  + \dfrac{1}{n!}

\rm \:  =  \: \dfrac{a_{n - 1}}{(n - 1)!} + \dfrac{1}{(n - 1)!}   + \dfrac{1}{n!}

Continuing like this, we get

.

.

.

.

.

.

\rm \:  =  \: \dfrac{a_2}{2!}  + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  + \dfrac{1}{n!}

\rm \:  =  \: \dfrac{2(a_1 + 1)}{2!}  + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  + \dfrac{1}{n!}

\rm \:  =  \: \dfrac{2(1+ 1)}{2!}  + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  + \dfrac{1}{n!}

\rm \:  =  \: 2 + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  + \dfrac{1}{n!}

\rm \:  =  \: 1 + 1 + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  + \dfrac{1}{n!}

\rm \:  =  \: 1 + \dfrac{1}{1!} + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  + \dfrac{1}{n!}

So, Now Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}\bigg[1 + \dfrac{1}{a_1} \bigg]\bigg[1 + \dfrac{1}{a_2} \bigg] -  -  -  - \bigg[1 + \dfrac{1}{a_n} \bigg]

\rm \:  =  \displaystyle\lim_{n \to \infty}\bigg[\: 1 + \dfrac{1}{1!} + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  + \dfrac{1}{n!} \bigg]

\rm \:  =  \: e

Hence,

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}\bigg[1 + \dfrac{1}{a_1} \bigg]\bigg[1 + \dfrac{1}{a_2} \bigg] -  -  -  - \bigg[1 + \dfrac{1}{a_n} \bigg] = e

So, option (a) is correct

Similar questions