Math, asked by madhav5245, 1 day ago

Solve the given integral

 \int \frac{dx}{ \sqrt{x}  \sqrt{2 - x} }  \\

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{x}  \sqrt{2 - x} }  \\

can be rewritten as

\rm \:  =  \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{x(2 - x)} }  \\

\rm \:  =  \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{2x - {x}^{2} } }  \\

\rm \:  =  \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ - ({x}^{2}  - 2x)} }  \\

can be further rewritten as

\rm \:  =  \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ - ({x}^{2}  - 2x + 1 - 1)} }  \\

\rm \:  =  \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ - [{(x - 1)}^{2} - 1]} }  \\

\rm \:  =  \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{1 - {(x - 1)}^{2}} }  \\

\rm \:  =  \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ {1}^{2}  - {(x - 1)}^{2}} }  \\

We know,

\boxed{ \rm{ \:\displaystyle \int \rm \: \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } \:  =  \:  {sin}^{ - 1} \frac{x}{a} + c \:  \: }} \\

So, using this result, we get

\rm \:  =  \:  {sin}^{ - 1} \dfrac{(x - 1)}{1}  + c \\

\rm \:  =  \:  {sin}^{ - 1}(x - 1) + c \\

Hence,

\rm\implies \:\boxed{ \rm{ \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{x}  \sqrt{2 - x} }  =  \:  {sin}^{ - 1}(x - 1) + c \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \dfrac{1}{a} {tan}^{ - 1} \dfrac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } }  = log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } | + c  }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}  \frac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} } } = log |x +  \sqrt{ {x}^{2} +  {a}^{2}} | + c}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Anonymous
1

Step-by-step explanation:

[tex]\large\underline{\sf{Solution-}}Solution−

Given integral is

\begin{gathered}\rm \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{x} \sqrt{2 - x} } \\ \end{gathered}∫x2−xdx

can be rewritten as

\begin{gathered}\rm \: = \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{x(2 - x)} } \\ \end{gathered}=∫x(2−x)dx

\begin{gathered}\rm \: = \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{2x - {x}^{2} } } \\ \end{gathered}=∫2x−x2dx

\begin{gathered}\rm \: = \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ - ({x}^{2} - 2x)} } \\ \end{gathered}=∫−(x2−2x)dx

can be further rewritten as

\begin{gathered}\rm \: = \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ - ({x}^{2} - 2x + 1 - 1)} } \\ \end{gathered}=∫−(x2−2x+1−1)dx

\begin{gathered}\rm \: = \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ - [{(x - 1)}^{2} - 1]} } \\ \end{gathered}=∫−[(x−1)2−1]dx

\begin{gathered}\rm \: = \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{1 - {(x - 1)}^{2}} } \\ \end{gathered}=∫1−(x−1)2dx

\begin{gathered}\rm \: = \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{ {1}^{2} - {(x - 1)}^{2}} } \\ \end{gathered}=∫12−(x−1)2dx

We know,

\begin{gathered}\boxed{ \rm{ \:\displaystyle \int \rm \: \frac{dx}{ \sqrt{ {a}^{2} - {x}^{2} } } \: = \: {sin}^{ - 1} \frac{x}{a} + c \: \: }} \\ \end{gathered}∫a2−x2dx=sin−1ax+c

So, using this result, we get

\begin{gathered}\rm \: = \: {sin}^{ - 1} \dfrac{(x - 1)}{1} + c \\ \end{gathered}=sin−11(x−1)+c

\begin{gathered}\rm \: = \: {sin}^{ - 1}(x - 1) + c \\ \end{gathered}=sin−1(x−1)+c

Hence,

\begin{gathered}\rm\implies \:\boxed{ \rm{ \: \displaystyle \int \rm \: \frac{dx}{ \sqrt{x} \sqrt{2 - x} } = \: {sin}^{ - 1}(x - 1) + c \: }} \\ \end{gathered}⟹∫x2−xdx=sin−1(x−1)+c

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ {x}^{2} + {a}^{2} } = \dfrac{1}{a} {tan}^{ - 1} \dfrac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ \sqrt{ {x}^{2} - {a}^{2} } } = log |x + \sqrt{ {x}^{2} - {a}^{2} } | + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ \sqrt{ {a}^{2} - {x}^{2} } } = {sin}^{ - 1} \frac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf \frac{dx}{ \sqrt{ {x}^{2} + {a}^{2} } } = log |x + \sqrt{ {x}^{2} + {a}^{2}} | + c}\\ \\ \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}MoreFormulaeMoreFormulae★∫x2+a2dx=a1tan−1ax+c★∫x2−a2dx=log∣x+x2−a2∣+c★∫a2−x2dx=sin−1ax+c★∫x2+a2dx=log∣x+x2+a2∣+c

Similar questions