Solve the given quadratic equation 2x2 + x + 1 = 0.
Answers
Answered by
202
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
Given quadratic equation: 2x^2 + x + 1 = 0
Now, compare the given quadratic equation with the general form ax^2 + bx + c = 0
On comparing, we get
a = 2, b = 1 and c = 1
Therefore, the discriminant of the equation is:
D = b^2– 4ac
Now, substitute the values in the above formula
D = (1)^2 – 4(2)(1)
D = 1- 8
D = -7
Therefore, the required solution for the given quadratic equation is
x =[-b ± √D]/2a
x = [-1 ± √-7]/2(2)
We know that, √-1 = i
x = [-1 ± √7i] / 4
Hence, the solution for the given quadratic equation is (-1 ± √7i) / 4
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
Hope It's Helpful.....:)
Similar questions