Math, asked by Anonymous, 1 month ago

Solve the given question

Topic:Determinants .

Sub:Mathematics.​

Attachments:

Answers

Answered by Anonymous
31

Given :    

 \sf \: \begin{lgathered}A = \begin{bmatrix} 3 &amp; 7 \\ 2 &amp; 5 \end{bmatrix}\end{lgathered} and</p><p>\begin{lgathered} \:  \: B = \begin{bmatrix} 6 &amp; 8 \\ 7&amp; 9 \end{bmatrix}\end{lgathered} \:

To Find :

verify that (AB)⁻¹= B⁻¹A⁻¹

Solution :

A⁻¹  =  AdjA / | A |

 : \implies  \sf \: \begin{lgathered}A = \begin{bmatrix} 3 &amp; 7 \\ 2 &amp; 5 \end{bmatrix}\end{lgathered} </p><p>\begin{lgathered} \:  \: B = \begin{bmatrix} 6 &amp; 8 \\ 7&amp; 9 \end{bmatrix}\end{lgathered} \:

 : \implies\sf \: \begin{lgathered}AB = \begin{bmatrix} 3\times6 + 7\times 7 &amp; 3\times8 + 7\times 9 \\ 2\times6 + 5\times 7 &amp; 2\times8 + 5\times 9\end{bmatrix}\end{lgathered} \:

 : \implies\sf \: \begin{lgathered}AB = \begin{bmatrix} 67 &amp; 87 \\ 47 &amp; 61\end{bmatrix}\end{lgathered} \:

| AB |  =  (67 * 61 ) - (47 * 87)  = -2

 : \implies\sf \: \begin{lgathered}Adj \:  \: B= \begin{bmatrix}  \:  \:  \:  \: 61 &amp; -87 \\ -47 &amp; \:  \:  \:  \:  67\end{bmatrix}\end{lgathered}</p><p>

 : \implies\sf \: B ^{ - 1}  =\begin{lgathered}\frac{-1}{2} \begin{bmatrix} 9 &amp; -8 \\ -7 &amp; 6 \end{bmatrix}\end{lgathered}

 : \implies\sf \: \begin{lgathered}A = \begin{bmatrix} 3 &amp; 7 \\ 2 &amp; 5 \end{bmatrix}\end{lgathered}

| A | = 3 * 5 - 2 * 7 = 1

: \implies \sf \: \begin{lgathered}AdjA = \begin{bmatrix}  \:  \:  \: 5 &amp; -7 \\ -2 &amp;  \:  \:  \:  3 \end{bmatrix}\end{lgathered}

 : \implies\sf \: A ^{ - 1}  = \begin{lgathered}\begin{bmatrix}  \:  \:  \:  5 &amp; -7 \\ -2 &amp;  \:  \:  \: 3 \end{bmatrix}\end{lgathered}

: \implies \sf \: B ^{ - 1} A ^{ - 1}   = \begin{lgathered}\frac{-1 \:  \:  }{ \:  \:  2} \begin{bmatrix}  \:  \: 9 &amp; -8 \\ -7 &amp; \:  \:  \:   6 \end{bmatrix}\end{lgathered} \begin{lgathered}\begin{bmatrix}  \:  \:  \:  5 &amp; -7 \\ -2 &amp;  \:  \:  \: 3 \end{bmatrix}\end{lgathered} \:

 : \implies\sf \: B ^{ - 1} A ^{ - 1} = \begin{lgathered}\frac{-1}{2} \begin{bmatrix} 61 &amp; -87 \\ -47 &amp; 67\end{bmatrix}\end{lgathered}

 : \implies\sf \: (AB) ^{ - 1}  = \begin{lgathered}\frac{-1}{2} \begin{bmatrix}  \:  \:  \:  \: 61 &amp; -87 \\ -47 &amp; \:  \:  \:  67\end{bmatrix}\end{lgathered}

 : \implies\sf \:   (AB)  ^{ - 1} = B ^{ - 1}A  ^{ - 1}= </p><p>\begin{lgathered}\frac{-1}{2} \begin{bmatrix} 61 &amp; -87 \\ -47 &amp; 67\end{bmatrix}\end{lgathered}

 \bf \:  (AB)  ^{ - 1} = B ^{ - 1}A  ^{ - 1} \:

Similar questions