Solve the given system of equations
99x + 101y = 499
101x +99y = 501
Answers
Step-by-step explanation:
adding both the equations we get
200x+200y=501+499
200(x+y)=1000
x+y=500 ----(1)
Similarly,
subtracting both the equations we get
2x-2y=501-499
2(x-y)=2
x-y=1 ----(2)
Adding both equations we get
(x+y)+(x-y)=500+1
x+y+x-y=501
2x=501
x=501/2
subtracting both equations we get
(x+y)-(x-y)=500-1
x+y-x+y=499
2y=499
y=499/2
Answer:
99x + 101y = 499 .....(I)
101x + 99y = 501 .....(II)
Adding (I) and (II)
200x+200y=1000
⇒x+y=5 .....(III)
Subtracting (II) from (I)
99x−101x+101y−99y=499−501
⇒−2x+2y=−2
⇒−x+y=−1 .....(IV)
Adding (III) and (IV)
x+y=5−x+y=−1
⇒2y=4
⇒y=2
Putting the value of y = 2 in (III) we get
x+2=5⇒x=5−2=3
Thus, (x, y) = (3, 2)