Math, asked by PragyaTbia, 1 year ago

Solve the inequalities and show the graph of the solution on number line: \frac{x}{2} \geq \frac{(5x-2)}{3}- \frac{(7x-3)}{5}

Answers

Answered by TooFree
0

\dfrac{x}{2} \geq \dfrac{(5x-2)}{3}- \dfrac{(7x-3)}{5}

\dfrac{x}{2} \geq \dfrac{5(5x-2)}{15}- \dfrac{3(7x-3)}{15}

\dfrac{x}{2} \geq \dfrac{25x-10}{15}- \dfrac{21x-9}{15}

\dfrac{x}{2} \geq \dfrac{25x-10 - 21x + 9}{15}

\dfrac{x}{2} \geq \dfrac{4x-1}{15}

15x \geq 2(4x - 1)

15x \geq 8x - 2

7x \geq - 2

x \geq -\dfrac{2}{7}

Attachments:
Similar questions