Math, asked by PragyaTbia, 1 year ago

Solve the inequalities for real x for the following equation: \frac{(2x-1)}{3} \geq \frac{(3x-2)}{4} -\frac{(2-x)}{5}

Answers

Answered by TooFree
0

\dfrac{(2x-1)}{3} \geq \dfrac{(3x-2)}{4} -\dfrac{(2-x)}{5}


Make into single fractions:

\dfrac{(2x-1)}{3} \geq \dfrac{5(3x-2)}{20} -\dfrac{4(2-x)}{20}

\dfrac{(2x-1)}{3} \geq \dfrac{5(3x-2) - 4(2 - x)}{20}


Distribute 5 and 4:

\dfrac{(2x-1)}{3} \geq \dfrac{15x-10 - 8 + 4x}{20}


Combine like terms:

\dfrac{(2x-1)}{3} \geq \dfrac{19x-18 }{20}


Multiply by 20 and 3:

20(2x - 1) \geq 3(19x - 18)


Distribute the 20 and 3:

40x - 20 \geq 57x - 54


Rearrange:

40x - 57x \geq -54+ 20


Combine like terms:

-17x \geq -34


Divide both sides by -17:

x \leq 2


Similar questions