Math, asked by PragyaTbia, 1 year ago

Solve the inequalities for real x for the following equation: \frac{x}{4} \  \textless \ \frac{(5x-2)}{3} -\frac{(7x-3)}{5}

Answers

Answered by TooFree
1

\dfrac{x}{4} \ \textless \ \dfrac{(5x-2)}{3} -\dfrac{(7x-3)}{5}


Make into single fraction:

\dfrac{x}{4} \ \textless \ \dfrac{5(5x-2)}{15} -\dfrac{3(7x-3)}{15}

\dfrac{x}{4} \ \textless \ \dfrac{5(5x-2) - 3(7x - 3)}{15}

\dfrac{x}{4} \ \textless \ \dfrac{25x - 10-21x + 9}{15}

\dfrac{x}{4} \ \textless \ \dfrac{4x - 1}{15}


Multiply 4 and 15:

15x \ \textless \ 4(4x - 1)


Distribute 4:

15x \ \textless \ 16x - 4


Subtract 16x from both sides:

15x - 16x \ \textless \ - 4

-x \ \textless \ - 4


Divide by -1:

x \ \textgreater 4

Similar questions