solve the inequality log (2+x) to the base x square less than 1
Answers
it is given that
for log to be defined,
(2 + x) > 0 ⇒x > -2 .......(1)
x² > 0 for all x belongs to R.
and x² ≠ 1 ⇒ x ≠ 1
case 1 : if we take x² > 1 ⇒x > 1 or, x < -1
now,
⇒ (2 + x) < x²
⇒ x² - x - 2 < 0
⇒ x² - 2x + x - 2 < 0
⇒ x(x - 2) + 1(x - 2) < 0
⇒ (x + 1)(x - 2) < 0
⇒x > 2 or, x < -1
taking common inequality from x >1 or, x < -1 and x > 2 or, x < -1
we get, x > 2 or x < -1
so, x (2, ∞) U (-∞, -1) .....(2)
from equations (1) and (2),
(2, ∞) U (-2, -1) .......(3)
case 2 : if we take 0 < x² < 1 ⇒ -1 < x < 1, x ≠ 0
or, (2 + x) > x²
or, x² - x - 2 < 0
or, (x - 2)(x + 1) < 0
or, -1 < x < 2
taking common inequality from -1 < x < 1 ,x ≠ 0 and -1 < x < 2
or, x (-1, 0) U(0, 1) ......(4)
taking common inequality of equations (3) and (4),
we get, x(-2, -1) U (-1, 0) U (0, 1) U (2, ∞)
Step-by-step explanation:
it is given that log_{x^2}(2+x) < 1logx2(2+x)<1
for log to be defined,
(2 + x) > 0 ⇒x > -2 .......(1)
x² > 0 for all x belongs to R.
and x² ≠ 1 ⇒ x ≠ 1
case 1 : if we take x² > 1 ⇒x > 1 or, x < -1
now, log_{x^2}(2+x) < 1logx2(2+x)<1
⇒ (2 + x) < x²
⇒ x² - x - 2 < 0
⇒ x² - 2x + x - 2 < 0
⇒ x(x - 2) + 1(x - 2) < 0
⇒ (x + 1)(x - 2) < 0
⇒x > 2 or, x < -1
taking common inequality from x >1 or, x < -1 and x > 2 or, x < -1
we get, x > 2 or x < -1
so, x \in∈ (2, ∞) U (-∞, -1) .....(2)
from equations (1) and (2),
x\inx∈ (2, ∞) U (-2, -1) .......(3)
case 2 : if we take 0 < x² < 1 ⇒ -1 < x < 1, x ≠ 0
log_{x^2}(2+x) < 1logx2(2+x)<1
or, (2 + x) > x²
or, x² - x - 2 < 0
or, (x - 2)(x + 1) < 0
or, -1 < x < 2
taking common inequality from -1 < x < 1 ,x ≠ 0 and -1 < x < 2
or, x \in∈ (-1, 0) U(0, 1) ......(4)
taking common inequality of equations (3) and (4),
we get, x\in∈ (-2, -1) U (-1, 0) U (0, 1) U (2, ∞)