Math, asked by Anonymous, 1 month ago

Solve the integral

\int \left[1-\dfrac{x}{1!} + \dfrac{x^2}{2!}-\dfrac{x^3}{3!}+...\infty\right]e^{2x} dx

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \left[1-\dfrac{x}{1!} + \dfrac{x^2}{2!}-\dfrac{x^3}{3!}+...\infty\right]e^{2x} dx

We know,

From exponential series,

\rm :\longmapsto\: {e}^{x} =  1 + \dfrac{x}{1!} + \dfrac{x^2}{2!} + \dfrac{x^3}{3!}+...\infty

Now, Replace x by - x, we get

\rm :\longmapsto\: {e}^{ - x} =  1 + \dfrac{( - x)}{1!} + \dfrac{( - x)^2}{2!} + \dfrac{( - x)^3}{3!}+...\infty

\rm :\longmapsto\: {e}^{ - x} =  1  -  \dfrac{x}{1!} + \dfrac{x^2}{2!}  -  \dfrac{x^3}{3!}+...\infty

So, given integral

\rm :\longmapsto\:\displaystyle\int\rm \left[1-\dfrac{x}{1!} + \dfrac{x^2}{2!}-\dfrac{x^3}{3!}+...\infty\right]e^{2x} dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  {e}^{ - x}  \times  {e}^{2x} \: dx

\rm \:  =  \: \displaystyle\int\rm  {e}^{ - x + 2x} \: dx

\rm \:  =  \: \displaystyle\int\rm   {e}^{x}  \: dx

\rm \:  =  \:  {e}^{x} \:  +  \: c

Hence,

\boxed{ \tt{ \: \:\displaystyle\int\rm \left[1-\dfrac{x}{1!} + \dfrac{x^2}{2!}-\dfrac{x^3}{3!}+...\infty\right]e^{2x} dx \:  =  \:  {e}^{x} + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO EXPLORE

Let prove that,

\rm :\longmapsto\: {e}^{x} =  1 + \dfrac{x}{1!} + \dfrac{x^2}{2!} + \dfrac{x^3}{3!}+...\infty

Let assume that

\rm :\longmapsto\:f(x) =  {e}^{x}

So, differential coefficients of f(x) are as follow :-

\rm :\longmapsto\:f'(x) =  {e}^{x}

\rm :\longmapsto\:f''(x) =  {e}^{x}

\rm :\longmapsto\:f'''(x) =  {e}^{x}

.

.

.

So, differential coefficients at x = 0, are

\rm :\longmapsto\:f(0) = 1

\rm :\longmapsto\:f'(0) = 1

\rm :\longmapsto\:f''(0) = 1

\rm :\longmapsto\:f'''(0) = 1

.

.

.

So, Using Mc Lauren's Series Method, we have

\rm :\longmapsto\:f(x) = f(0) + xf'(0) + \dfrac{ {x}^{2} }{2!}f''(0) +  \dfrac{ {x}^{3} }{3!}f'''(0) +  -  -  -  -

So, on substituting above evaluated values, we get

\rm :\longmapsto\:{e}^{x} = 1 + x + \dfrac{ {x}^{2} }{2!} +  \dfrac{ {x}^{3} }{3!} +  -  -  -  -  \infty

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions