Math, asked by noisefirehero, 1 month ago

Solve the modulus function:
|x²-2| = 2|x-3|

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 | {x}^{2} - 2 |  = 2 |x - 3|

 \implies | {x}^{2} - 2 |^{2}   = (2 |x - 3| )^{2}

 \implies ( {x}^{2} )^{2}+  (2)^{2}   - 4 {x}^{2}  = 4 \{ (x)^{2}   + ( 3 )^{2}  - 6x \} \\

 \implies  {x}^{4}+  4  - 4 {x}^{2}  = 4  x^{2}   + 36  - 24x  \\

 \implies  {x}^{4} - 32  - 8 {x}^{2}   +  24x  = 0 \\

 \implies  {x}^{4}   - 8 {x}^{2}   +  24x - 32  = 0 \\

 \implies  {x}^{4}  -  2{x}^{3}  +  2{x}^{3}   -4{x}^{2}  -  4 {x}^{2}    +  8x + 16x - 32  = 0 \\

 \implies  {x}^{3}(x  -  2)  +  2{x}^{2}(x   -2)  -  4x (x - 2) + 16(x - 2)  = 0 \\

 \implies  (x  -  2)( {x}^{3}   +  2{x}^{2}  -  4x+ 16)  = 0 \\

 \implies  (x  -  2)( {x}^{3}   +  4{x}^{2}  - 2 {x}^{2}  -  8x + 4x+ 16)  = 0 \\

 \implies  (x  -  2) \{ {x}^{2} (x  +  4)  - 2x(x   + 4)+ 4(x+ 4)\} = 0 \\

 \implies  (x  -  2)  (x  +  4)( {x}^{2}   - 2x+ 4) = 0 \\

 \implies  (x  -  2)  (x  +  4)( {x}^{2}   - 2x+ 4) = 0 \\

Here,  x^2 -2x+4 is always positive becaise its  a>0\:\: \& \:\: D<0

so, the required values of x are  x=2\:\: \&\:\: x=-4

Similar questions