solve the pair of linear equations 3 x + 2 y =22 and 5 x - 3 y = 5 by the method of substitution
Answers
Answered by
2
Step-by-step explanation:
Let
\begin{gathered}3x+2y=22....eqn1 \\5x-3y=5....eqn2\end{gathered}
3x+2y=22....eqn1
5x−3y=5....eqn2
⇒
to use the method of substitution, we solve for one of the variables first
choosing eqn 2
\begin{gathered}5x-3y=5\\5x=5+3y\\x=\frac{5+3y}{5}\end{gathered}
5x−3y=5
5x=5+3y
x=
5
5+3y
⇒
substituting x=\frac{5+3y}{5}x=
5
5+3y
in eqn 1 ⇒
\begin{gathered}3(\frac{5+3y}{5} )+2y=22\\(\frac{15+9y}{5} )+2y=22\\\frac{15+9y+10y}{5} =22\\15+19y=110\\19y=110-15\\19y=95\\y=5\end{gathered}
3(
5
5+3y
)+2y=22
(
5
15+9y
)+2y=22
5
15+9y+10y
=22
15+19y=110
19y=110−15
19y=95
y=5
⇒
substituting y=5 in eqn ...2
\begin{gathered}5x-3(5)=5\\5x-15=5\\5x=5+15\\5x=20\\x=4\end{gathered}
5x−3(5)=5
5x−15=5
5x=5+15
5x=20
x=4
hope it is helpful for you
Similar questions
Math,
1 month ago
Economy,
1 month ago
Math,
1 month ago
Political Science,
3 months ago
Physics,
10 months ago