Math, asked by shivamkumar01, 1 year ago

solve the problem .

Attachments:

Answers

Answered by mudrabhandari1p4cb5t
1

 \sqrt{x + 3}  +  \sqrt{x + 2}   -  \sqrt{2x + 4} > 0  \\  \sqrt{x + 3}  +  \sqrt{x + 2}  -  \sqrt{2}  \sqrt{ x + 2} > 0  \\  \\  \sqrt{x + 3}  - ( \sqrt{2}  - 1) \sqrt{x + 2}  > 0 \\  \sqrt{x + 3}  > ( \sqrt{2}  - 1) \sqrt{ x + 2}  \\ squaring \: both \: sides \\ x + 3 > (2 + 1 - 2 \sqrt{2})(x + 2 ) \\ x + 3 > 3x - 2 \sqrt{2} x + 6 - 4 \sqrt{2}  \\ 2 \sqrt{2} x - 2x > 3 - 4 \sqrt{2}  \\ x(2 \sqrt{2}  - 2) > 3 - 4 \sqrt{2}  \\ x >  \frac{3 - 4 \sqrt{2} }{2 \sqrt{2}  - 2}
Similar questions