Math, asked by Ankushhelper123, 8 months ago

solve the problem for class 9

Attachments:

Answers

Answered by 007Boy
2

Question :-

(x {}^{a - b} ) {}^{a + b}  \times (x {}^{b - c} ) {}^{b + c}  \times (x {}^{c - a} ) {}^{c + a}  = 1

Solution :-

Take LHS.

(x {}^{a - b} ) {}^{a + b}  \times (x {}^{b - c} ) {}^{b + c}  \times (x {}^{c - a} ) {}^{c + a}  \\  \\ apply \:  \: (a {}^{m} ) {}^{ {}^{n} }  = a {}^{mn}  \:  \: formula \\  \\ hence  , \\  \:  \:  \\ (x) {}^{a {}^{2}  - b {}^{2} }  \times (x) {}^{b {}^{2}  - c {}^{2} }  \times (x) {}^{c {}^{2}  - a {}^{2} }  \\  \\ now \: \:  apply  \: \: a {}^{m}  \times a {}^{n}  = a {}^{m + n}  \:  \: formula \\  \\ (x) {}^{a {}^{2}  - b {}^{2} + b {}^{2}   - c {}^{2}   + c {}^{2} - a {}^{2}  }  = x {}^{0}  \\  \\  \\ and \: we \: know \: that \: if \: a \:  \\ number \: has \:  \:  \: power \: 0 \:  \:  \\ then \: its \: value \: will \: be = 1 \\  \\ so , \:  \:  \: x {}^{0}  = 1 \:  \:  \: rhs \\  \\  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: <strong><u>Proved</u></strong><strong><u> </u></strong>

Answered by InfiniteSoul
1

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

show that:-

\sf(x^{a - b} )^{a + b}  \times (x ^{b - c} )^{b + c}  \times (x ^{c - a} )^{c + a}  = 1

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

\sf(x^{a - b} )^{a + b}  \times (x ^{b - c} )^{b + c}  \times (x ^{c - a} )^{c + a}  = 1

{\bold{\blue{\boxed{\bf{(a+b)(a-b)=a^2 - b^2}}}}}

\sf(x^{a^2 - b^2} ) \times (x ^{b^2 - c^2} ) \times (x ^{c^2 - a^2} )  = 1

{\bold{\blue{\boxed{\bf{ x^a \times x^b = x^{a+b}}}}}}

\sf x^{a^2 - b^2 + b^2 - c^2 + c^2 - a^2}= 1

\sf x^{\cancel a^2 - \cancel b^2 + \cancel b^2 - \cancel c^2 + \cancel c^2 - \cancel a^2}= 1

\sf x^0 = 1

{\bold{\blue{\boxed{\bf{x ^0 = 1}}}}}

\sf 1 = 1

............Hence Proved

________________________❤

THANK YOU ❤

Similar questions