solve the problem given
Answers
Answer:
Find the value of the integral
∫20∫20f(x+y) dx dy
where f(t) denotes the greatest integer ≤t
Solution Attempt: Let [y] represent the greater integer ≤y and {y} the fractional part of y.
Let x+y=t⟹dx=dt. Hence, ∫20∫20f(x+y) dx dy=∫20∫y+2yf(t) dt dy.
∫y+2yf(t) dt=∫y+2y[t]dt.
Case 1 If y is an integer
∫y+2y[t]dt=∫y+1y[t]dt+∫y+2y+1[t]dt=[y]+[y]+1=2[y]+1.
Case 2 : If y is not an integer
∫y+2y[t]dt=∫[y]+1y[t]dt+∫[y]+2[y]+1[t]dt+∫y+2[y]+2[t]dt.
=[y](1+{y})+([y]+1)+([y]+2)({y})
=[y]+[y]{y}+[y]+1+[y]{y}+2{y}
=2[y]+1+2[y]{y}+2{y}
=2y+1+2[y]{y}
here is your solution...
1.used than(u+v)=tanU+tanV1-tanU-tanV identify for decomposing arctan(2x-11+x-x2)
2.i used x=1-u transform in I integral
3.after summing 2 integrals I found result.
1=\inint10arcta2x-11+x-x2]dx
=\int 10 arctan(2x-11-x(x+1))dx
=\int1o arctan x DC +\int 10 arctan(x-1)dx
after using x=1-u an dx=-dutransforms
1=int 01arctan(1-u)(-du)+\int01arctan(u)(-du)
=\int(u-1)du+\int 01arctanu du
=-\int10 arctanu du-\int 10 arctan(u-1) du
=-\int 10 arctanx dx-\int 10 arctan(x-1) dx
after summing 2 integrals
2i=0 hence 1=0
I think it helps u