Math, asked by yashkinggamer7, 7 months ago

solve the problem given​

Attachments:

Answers

Answered by InfiniteSoul
19

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Numerator is 6 less than the denominator
  • If numerator is decreased by 4 and denominator is decreased by 1 the fraction becomes 5 / 8

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Original fraction = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

  • Numerator is 6 less than denominator

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Required \: fraction = \dfrac{ x - 6 }{x}}}

⠀⠀⠀⠀

  • If numerator is decreased by 4 and denominator is decreased by 1 the fraction becomes 5 / 8

⠀⠀⠀⠀

\sf : \implies\:{\bold{ \dfrac{ x - 6 - 4 }{x - 1 }= \dfrac{5}{8}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ \dfrac{ x - 10 }{x - 1 }= \dfrac{5}{8}}}

⠀⠀⠀

\sf : \implies\:{\bold{ 8 ( x - 10 ) = 5 ( x - 1 )}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 8x - 80 = 5x -  5}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 8x - 5x = 80 - 5}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ 3x = 75 }}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ x = \dfrac{75}{3}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ x = 25 }}

⠀⠀⠀⠀

  • Required fraction

\sf : \implies\:{\bold{ Required \: fraction = \dfrac{ x - 6 }{x}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Required \: fraction = \dfrac{ 25- 6 }{25}}}

⠀⠀⠀⠀

\sf : \implies\:{\bold{ Required \: fraction = \dfrac{ 19 }{25}}}

⠀⠀⠀⠀

⠀⠀⠀⠀

___________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Therefore ; {\bold{ Required \: fraction = \dfrac{ x - 6 }{x}}}
Answered by Anonymous
134

Given:

  • Numerator of a fraction is 6 less than its denominator.
  • If numerator is decreased by 4 and the denominator is decreased by 1 the fraction becomes 5/8

Find:

  • What is Fraction

Solution:

Let, the numerator be x

and denominator be y

 \mathbb{ACCORDING \: TO \: QUESTION}

Case 1:

 \sf \to  \dfrac{x}{y - 6}

 \sf \to x  =  y- 6.....(1)

Case 2:

 \sf \to  \dfrac{x - 4}{y - 1} = \dfrac{5}{8}

 \sf \to 8(x - 4) = 5(y - 1)

 \sf \to 8x - 32 = 5y - 5

 \sf \to 8x - 5y = - 5 + 32

 \sf \to 8x - 5y = 27

Now, use eq(1)

 \sf \to 8x - 5y = 27

 \sf \to 8(y - 6) - 5y = 27

 \sf \to 8y - 48 - 5y = 27

 \sf \to 8y - 5y  = 27 + 48

 \sf \to 3y  = 75

 \sf \to y  =  \cancel{\dfrac{75}{3}}  = 25

 \sf \to y  = 25

Hence, y = 25

_______________

Now, use the value of y in eq(1) we, get

 \sf \to x  =  y- 6

 \sf \to x  =  25- 6

 \sf \to x  = 19

Hence, x = 19

________________

So, fraction will be

 \sf \leadsto  \dfrac{x}{y}  =  \dfrac{19}{25}

________________

Verification

 \sf \to  \dfrac{x - 4}{y - 1} = \dfrac{5}{8}

where,

  • x = 19
  • y = 25

So,

 \sf \implies  \dfrac{x - 4}{y - 1} = \dfrac{5}{8}

 \sf \implies  \dfrac{19- 4}{25 - 1} = \dfrac{5}{8}

 \sf \implies  \dfrac{15}{24} = \dfrac{5}{8}

 \sf \implies  \cancel{ \dfrac{15}{24}} = \dfrac{5}{8}

 \sf \implies  \dfrac{5}{8} = \dfrac{5}{8}

Here,

L.H.S = R.H.S

Hence, VERIFIED

Similar questions