Math, asked by VijayaLaxmiMehra1, 1 year ago

Solve the Qno. 15 in the attachment

Standard:- 10

Content Quality Solution Required

❎ Don't Spamming ❎

Attachments:

Answers

Answered by siddhartharao77
4
The answer is in the attachment.


Hope it helps!
Attachments:

siddhartharao77: :-)
VijayaLaxmiMehra1: Bro!! where u write = 1 + sec A cosec A
VijayaLaxmiMehra1: oh sry I got it usaay ko prove krna tha
VijayaLaxmiMehra1: :-)
Answered by abhi569
3

 \frac{ \frac{ \sin(a) }{ \cos(a) } }{1 -   \frac{ \cos(a) }{  \sin(a)  } }  +  \frac{ \frac{ \cos(a) }{ \sin(a) } }{1 -  \frac{ \sin(a) }{ \cos(a) } }  \\  \\  \\  \\  =>  \frac{ \sin ^{2} (a) }{ \cos(a) ( \sin(a) -  \cos(a))  }  +  \frac{ \cos ^{2} (a) }{ \sin(a)( \cos(a)  -  \sin(a))  }  \\  \\  \\  \\  =>  \frac{1}{ \sin(a) -  \cos(a)  } ( \frac{ \sin ^{2} (a) }{ \cos(a) }  -  \frac{ \cos ^{2} (a) }{ \sin(a) } ) \\  \\  \\  \\  =>  \frac{1}{ \sin(a) -  \cos(a)  }  \times  \frac{ \sin ^{3} (a) -  { \cos ^{3} (a) }  }{ \sin(a)  \cos(a) }  \\  \\  \\  \\  =>  \frac{( \sin(a) -  \cos(a) )( \sin {a}^{2} (a)  +  \cos ^{2} (a) - sin(a)cos(a)  }{( \sin(a)  -  \cos(a))(sin(a) \cos(a) ) }  \\  \\  \\  \\  =>  \frac{1 + sin(a)cos(a)}{ \sin(a)  \cos(a) }  \\  \\  \\  \\  =>  \frac{1}{sin(a)cos(a)}  + 1 \\  \\  \\  \\  => sec(a)cosec(a) + 1




Hence, proved.
Similar questions