Math, asked by deepakgulhane0, 11 months ago

solve the quadratic equation


75
 {75x }^{2}  - 766x + 80 = 0

Answers

Answered by LohithSeedella
1

Step-by-step explanation:

75 {x}^{2}  - 766x + 80 = 0

To find roots of a quadratic equation

 \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a} \: and \:   \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}

 \frac{766 +  \sqrt{ {(766)}^{2}  - 4(75)(80)} }{2(75)}  \\   = \frac{ \sqrt{140689}  + 383}{75}

 \frac{766 -  \sqrt{ {(766)}^{2}  - 4(75)(80)} }{2(75)}  \\   = \frac{383 -  \sqrt{140689} }{75}

Similar questions