Math, asked by rameshmath7386, 1 year ago

solve the quadratic equation-a^2b^2x^2+b^2x-a^2x=0

Answers

Answered by Anonymous
0
so 2x=3

2x-3=0

2x+0-3=0

2x+0y-3=0

2x+0y+(-3)=0
Answered by ItzFrozenFlames
3

Given \: quadrtic \: equation \: is \\ a {}^{2} b {}^{2} x {}^{2}  + b {}^{2} x - a {}^{2} x - 1 = 0 \\  =  > b {}^{2} x(a {}^{2} x + 1) - 1(a {}^{2} x + 1) = 0 \\  =  > (a {}^{2} x + 1)(b {}^{2} x - 1) = 0 \\ x =  -  \frac{1}{a {}^{2} }  \: or \: x =  \frac{1}{b {}^{2} }  \\  \\ Hence, \: the \: roots \: of \: the \: given \: equtions \: are \:  \frac{ - 1}{a {}^{2} }  \: and \:  \frac{1}{b {}^{2} } .

Similar questions