Math, asked by anitaborse002, 2 months ago

solve the quadratic equation by using formula method 2x²-9x-5=0​

Answers

Answered by amansharma264
10

EXPLANATION.

Quadratic equation.

⇒ 2x² - 9x - 5 = 0.

As we know that,

Method = 1.

Factorizes the equation into middle term splits, we get.

⇒ 2x² - 10x + x - 5 = 0.

⇒ 2x(x - 5) + 1(x - 5) = 0.

⇒ (2x + 1)(x - 5) = 0.

⇒ x = -1/2  and  x = 5.

Method = 2.

As we know that,

⇒ D = Discriminant or b² - 4ac.

⇒ D = (-9)² - 4(2)(-5).

⇒ D = 81 + 40.

⇒ D = 121.

⇒ x = -b + √D/2a.

⇒ y = -b - √D/2a.

⇒ x = -(-9) + √121/2(2).

⇒ x = 9 + 11/4.

⇒ x = 20/4.

⇒ x = 5.

⇒ y = -(-9) - √121/2(2).

⇒ y = 9 - 11/4.

⇒ y = -2/4.

⇒ y = -1/2.

                                                                                                                     

MORE INFORMATION.

Conjugate roots.

If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Ridvisha
57

{ \red{ \tt{ \underline{ \underline{ \huge{QUESTION}}}}}}

{ \sf{ \: solve \: the \: quadratic \: equation }} \\ { \sf{\: by \: using \: the \: formula \: method.... }} \\ { \boxed { \boxed{ \green{ \tt{2 {x}^{2}  - 9x - 5 = 0}}}}}

{ \red{ \underline{ \underline{ \tt{ \huge{SOLUTION}}}}}}

{ \sf{ \blue{ using \: the \: quadratic \: formula \: also \: known \: as \: }}} \\ {\underline{\green{\sf{Sridhar  \: Acharya  's  \: formula}}}} \\  \\ { \dashrightarrow{ \boxed{ \boxed{ \red{  \tt{x =  \frac{ - b± \:  \sqrt{ {b}^{2} - 4ac } }{2a} }}}}}}

{ \sf{in \: the \: given \: question}} \\ { \dashrightarrow{ \tt{ \green{a = 2}}}} \\ { \dashrightarrow{ \tt{ \green{b =  - 9}}}} \\ { \dashrightarrow{ \tt{ \green{c =  - 5}}}} \\  \\ { \sf{ \blue{ subsituting \: the \: above \: values \: in \: the \: formula}}}

{ : { \implies{ \tt{ \green{x =  \frac{ - ( - 9)± \sqrt{ {9}^{2} - 4(2)( - 5) } }{2(2)}}}}}}

{ :{ \implies{ \tt{ \green{x =  \frac{9± \sqrt{(81  + 40)} }{4}}}}}}  \\  \\  \\ { : { \implies{ \tt{ \green{ x =  \frac{9± \sqrt{121} }{4} }}}}} \\  \\  \\ {  : { \implies{ \tt{ \green{x =  \frac{9±11}{4}}}}}}

{ \underline{ \red{ \sf{first \: value \: of \: root}}}} \\  \\ { :{ \implies{ \tt{ \green{x =  \frac{9 + 11}{4} }}}}} \\  \\  { :{ \implies{ \tt{ \green{x =  \frac{20}{4}}}}}} \\  \\  { :{ \implies{ \underline{ \boxed{ \tt{ \green{x =  5}}}}}}}

{ \underline{ \sf{ \red{second \: value \: of \: root}}}} \\  \\  { :{ \implies{ \tt{ \green{x =  \frac{9 - 11}{4}}}}}} \\  \\  { :{ \implies{ \tt{ \green{x =  \frac{ - 2}{4}}}}}} \\  \\  { :{ \implies{ \underline{ \boxed{ \tt{ \green{x =  \frac{ - 1}{2 }}}}}}}}

Similar questions