solve the quadratic equation for x. 4x²-4a²x+(a⁴-b⁴)=0
solve this and get 50 pts
Answers
Answered by
70
4x2 - 4a2x +a4 = b4
=>( 2x -a2 )2 = (b2)2
=> 2x - a2 = + b2 or - b2
=> x = (a2 - b2 ) / 2 or ( a2 + b2 ) /2
=>( 2x -a2 )2 = (b2)2
=> 2x - a2 = + b2 or - b2
=> x = (a2 - b2 ) / 2 or ( a2 + b2 ) /2
Answered by
54
i) 4x² - 4a²x + a⁴ - b⁴ = 0
ii) Grouping, {(2x)² - 2(2x)(a²) + (a²)²} - (b²)² = 0
==> (2x - a²)² - (b²)² = 0
iii) The above is of the form a² - b² = (a - b)(a + b),
here a = (2x - a²) and b = b²
So, (2x - a²)² - (b²)² = {(2x - a²) + (b²)}*{(2x - a²) - (b²)}
= {2x - (a² - b²)}*{2x - (a² + b²)} = 0
==> Either {2x - (a² - b²)} = 0 or {2x - (a² + b²)} = 0
So, when {2x - (a² - b²)} = 0, x = (a² - b²)/2
and when {2x - (a² + b²)} = 0, x = (a² + b²)/2
Similar questions