solve the quadratic equation: n² + 201n - 5400 = 0
Answers
Answered by
41
n²+201n-5400=0
or,n²+225n-24n-5400=0
or,n(n+225)-24(n+225)=0
or,(n+225)(n-24)=0
either n+225=0 or n-24=0
either n=-225 or n=24
Ans:The roots of the equation are -225 and 24 which are the values of n.
or,n²+225n-24n-5400=0
or,n(n+225)-24(n+225)=0
or,(n+225)(n-24)=0
either n+225=0 or n-24=0
either n=-225 or n=24
Ans:The roots of the equation are -225 and 24 which are the values of n.
Answered by
29
n² + 201 n - 5400 = 0
n = [ - 201 + - √(201² +4* 5400) ] / 2
= [ -201 + - √62001 ] / 2
n = [ -201 + - 249 ] /2
= +24 or - 225
so the factors are : (n + 225) (n - 24) of the quadratic polynomial.
n = [ - 201 + - √(201² +4* 5400) ] / 2
= [ -201 + - √62001 ] / 2
n = [ -201 + - 249 ] /2
= +24 or - 225
so the factors are : (n + 225) (n - 24) of the quadratic polynomial.
Similar questions
English,
8 months ago
Math,
8 months ago
Math,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago