Math, asked by yashbarje2005, 4 months ago

Solve the quadratic equation using formula method.m(3m+1)=2

Answers

Answered by PhoenixAnish
3

Answer:

m(3m + 1 )= 2

= 4m +1m =2

= 5m =2

m=5/2 or m=2.5

Answered by ILLUSTRIOUS27
1

Given

  • A equation m(3m+1)=2

To Find

  • value of m or root of the equation

Concept used

Discriminant

  \bf \: d =  {b}^{2}  - 4ac

Quadratic formula

 \bf \: x =  \dfrac{ - b \pm \sqrt{d} }{2a}

Solution

  1. First we made equation in the form of quadratic equation

 \rm \: m(3m + 1) = 2 \\  \\  \implies \boxed{ \bf \: 3 {m}^{2} + m - 2 = 0 }

2. Now we have quadratic equation

3. here

  • a=3
  • b=1
  • c=-2
  •  \rm \: d =   {b}^{2}   - 4ac \\  \\  \implies \rm \: d =  {1}^{2}  - 4 \times 3 \times  - 2 \\  \\  \implies \rm \: d = 25 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now

Using Quadratic Formula

 \rm \: x =  \dfrac{ - b \pm \sqrt{d} }{2a}

4. Here x(root) of this equation is m so we solve it now

5. Putting values

 \rm \: m =  \dfrac{ - 1 \pm \sqrt{25} }{2 \times 3}  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \rm \: m =  \dfrac{ - 1 \pm \: 5}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies \rm \: m =  \frac{ - 1 + 5}{6}  \:  \:  \: or \:  \frac{ - 1 - 5}{6}   \: \\  \\  \implies \rm \: m =  \frac{4}{6}  \:  \: or \:   \frac{ - 6}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \underline{ \boxed{  \huge  \bf \: m =  \frac{2}{3}  \: or \:  - 1}}

We can conclude that both roots are 2/3 or -1 you can do this question with middle term split also

Alternative method

Middle term split

 \rm \: 3 {m}^{2}  + m - 2 = 0 \\  \\  \implies \rm \: 3 {m}^{2}   + 3m  -  2m - 2 = 0  \:  \:  \:  \:  \:  \: \\  \\  \implies \rm \: 3m(m  + 1) - 2(m + 1) \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \rm \implies (m + 1) = 0 \: or \: (3m - 2) = 0 \\  \\  \implies \underline{ \boxed{ \huge \bf \: m =  - 1 \: or \:  \frac{2}{3} }}

Hence it is also verified by this method that the roots of this equation is -1 or 2/3

Similar questions