Math, asked by gkavinkumar666, 1 month ago

solve the quadratic equation1/x+1 +2/x+2 =4/x+4 by using quadratic formula​

Answers

Answered by bhagyabatiroutray10
1

Answer:

Here is the solution

Step-by-step explanation:

it's little bit difficult.

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\dfrac{1}{x + 1}  + \dfrac{2}{x + 2}  = \dfrac{4}{x + 4}

On taking LCM on LHS, we get

\rm :\longmapsto\:\dfrac{x + 2 + 2(x + 1)}{(x + 1)(x + 2)}  = \dfrac{4}{x + 4}

\rm :\longmapsto\:\dfrac{x + 2 + 2x + 2}{ {x}^{2}  + x + 2x + 2}  = \dfrac{4}{x + 4}

\rm :\longmapsto\:\dfrac{3x + 4 }{ {x}^{2}  +3x + 2}  = \dfrac{4}{x + 4}

\rm :\longmapsto\:4( {x}^{2} + 3x + 2) = (3x + 4)(x + 4)

\rm :\longmapsto\:4{x}^{2} + 12x + 8 = {3x}^{2} + 12x + 4x + 16

\rm :\longmapsto\:4{x}^{2} + 12x + 8 = {3x}^{2} + 16x + 16

\rm :\longmapsto\:4{x}^{2} + 12x + 8  -  {3x}^{2} - 16x  - 16 = 0

\rm :\longmapsto\:{x}^{2}  - 4x  - 8 = 0

Now, we know Quadratic Formula,

 \red{\rm :\longmapsto\:Solution \: of \: quadratic \: equation \:  {ax}^{2} + bx + c = 0 \: is \: }

\purple{ \boxed{ \bf{ \:  \:  \: x \:  =  \: \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a} \:  \:  \: }}}

Now, we have

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b =  -  \: 4

\rm :\longmapsto\:c =  -  \: 8

So, on substituting the values in Quadratic Formula, we get

\rm :\longmapsto\:x \:  =  \: \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}

\rm :\longmapsto\:x \:  =  \: \dfrac{ - ( - 4) \:  \pm \:  \sqrt{ {( - 4)}^{2} - 4(1)( - 8) } }{2(1)}

\rm :\longmapsto\:x \:  =  \: \dfrac{ 4 \:  \pm \:  \sqrt{ 16 + 32} }{2}

\rm :\longmapsto\:x \:  =  \: \dfrac{ 4 \:  \pm \:  \sqrt{ 48} }{2}

\rm :\longmapsto\:x \:  =  \: \dfrac{ 4 \:  \pm \:  \sqrt{ 4 \times 4 \times 3} }{2}

\rm :\longmapsto\:x \:  =  \: \dfrac{ 4 \:  \pm \:4  \sqrt{ 3} }{2}

\bf\implies \:x = 2 \:  \pm \: 2 \sqrt{3}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions