Solve the ques 17 in the attachment
Standard:- 10
Content Quality Solution Required
❎ Don't Spamming ❎
Attachments:
Answers
Answered by
9
I skipped small calculations : hope you can figure it out .
Steps:
1) We have two linear equations in two variables ,here α & β:
where
[tex] a_{1} = x^{3} \:,b_{1} = -y ,c_{1} = -(x-y) \\ a_{2} = x \:,b_{2} = y^{2} ,c_{2} = -xy^{2} [/tex]
Above Symbols have usual meanings :)
2) By Cross Multiplication Method,
On substituting values , we get
[tex] \frac{ \alpha }{xy^{3}+xy^{2}-y^{3}} = \frac{ \beta }{-x(x-y)+x^{4}y^{2}} = \frac{1}{x^{3}y^{2}+ xy} \\ \\ =\ \textgreater \ \alpha = \frac{xy^{3}+xy^{2}-y^{3}}{x^{3}y^{2}+xy}= \frac{xy^{2}+xy-y^{2}}{x^{3}y+x} \\ \\ =\ \textgreater \ \beta = \frac{-x(x-y)+x^{4}y^{2}}{x^{3}y^{2}+xy} = \frac{-x+y+x^{3}y^{2}}{x^{2}y^{2}+y} [/tex]
Hence we obtained values of & β in terms of x, & y .
Steps:
1) We have two linear equations in two variables ,here α & β:
where
[tex] a_{1} = x^{3} \:,b_{1} = -y ,c_{1} = -(x-y) \\ a_{2} = x \:,b_{2} = y^{2} ,c_{2} = -xy^{2} [/tex]
Above Symbols have usual meanings :)
2) By Cross Multiplication Method,
On substituting values , we get
[tex] \frac{ \alpha }{xy^{3}+xy^{2}-y^{3}} = \frac{ \beta }{-x(x-y)+x^{4}y^{2}} = \frac{1}{x^{3}y^{2}+ xy} \\ \\ =\ \textgreater \ \alpha = \frac{xy^{3}+xy^{2}-y^{3}}{x^{3}y^{2}+xy}= \frac{xy^{2}+xy-y^{2}}{x^{3}y+x} \\ \\ =\ \textgreater \ \beta = \frac{-x(x-y)+x^{4}y^{2}}{x^{3}y^{2}+xy} = \frac{-x+y+x^{3}y^{2}}{x^{2}y^{2}+y} [/tex]
Hence we obtained values of & β in terms of x, & y .
VijayaLaxmiMehra1:
Thanks :))
Similar questions
Chemistry,
8 months ago
Hindi,
8 months ago
Psychology,
1 year ago
Math,
1 year ago
Hindi,
1 year ago