Math, asked by mishraprakash468, 3 months ago

Solve the question...​

Attachments:

Answers

Answered by Anonymous
4

Solution

 \bf we \: have

 \to \tt \:  \displaystyle \lim _{ \tt \: x \to4} \tt \bigg( \frac{3 -  \sqrt{5 + x} }{1 -  \sqrt{5 - x} }  \bigg)

 \bf \: Now \: put \: x = 4 \: on  \: given \: equation \: to \: finding \: which \: form

 \tt \to \:  \bigg( \dfrac{3 -  \sqrt{5 + 4} }{1 -  \sqrt{5 - 4} }  \bigg)

 \tt \to \bigg( \dfrac{3 -  \sqrt{9} }{1 -  \sqrt{1} }  \bigg)

 \tt \to \:  \bigg( \dfrac{3 - 3}{1 - 1}  \bigg)

 \tt \to \dfrac{0}{0}

 \bf \: Its \:  \dfrac{0}{0}  \: form \: so \: we \: use \: L'Hospital \: rule

 \to \tt \:  \displaystyle \lim _{ \tt \: x \to0} \tt \bigg( \dfrac{\dfrac{d(3 -  \sqrt{5 + x})}{dx} }{ \dfrac{d(1 -  \sqrt{5 - x} )}{dx}}  \bigg)

 \tt \to \:   \displaystyle \lim _{ \tt \: x \to4} \tt \bigg( \dfrac{ \dfrac{ - 1}{2 \sqrt{5 + x} } }{ \dfrac{ - 1}{2 \sqrt{5 - x}  } \times  - 1 }  \bigg)

\tt \to \:   \displaystyle \lim _{ \tt \: x \to4}  \tt\bigg( \frac{ - 1}{2 \sqrt{5 + x}  }  \times  \frac{2 \sqrt{5 - x} }{1}  \bigg)

\tt \to \:   \displaystyle \lim _{ \tt \: x \to4}  \tt\bigg( \frac{ - 2 \sqrt{5 - x} }{2 \sqrt{5 + x} }  \bigg)

\tt \to \:   \displaystyle \lim _{ \tt \: x \to4}  \tt\bigg( \frac{ - \sqrt{5 - x} }{ \sqrt{5 + x} }  \bigg)

\bf \: Now \: put \: the \: value \: x = 4

 \tt \to \bigg( \dfrac{ -  \sqrt{5 - 4} }{ \sqrt{5 + 4} }  \bigg)

 \tt \to  \dfrac{ -  \sqrt{1} }{ \sqrt{9} }

 \tt \to \:  \dfrac{ - 1}{3}

 \bf \: Answer

 \tt \to \:  \dfrac{ - 1}{3}

Similar questions