Math, asked by sonusharma45, 5 months ago

solve the question

answer mat batana solve karo ​

Attachments:

Answers

Answered by IdyllicAurora
14

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;:-}}}

Here the concept of Arithmetic Progression had been used. We see we are given the sum nₜₕ term. From this we can derive a equation to find the nₜₕ term by using formula of sum of x terms. After finding the value of n, we can apply values and find the answer that is x.

Let's do it !!

_____________________________________________

Formula Used :-

\\\;\boxed{\sf{S_{n}\;=\;\bf{\dfrac{n}{2}\;[2a\;+\;(n\;-\;1)d]}}}

\\\;\boxed{\sf{a_{n}\;=\;\bf{a\;+\;(n\;-\;1)d}}}

_____________________________________________

Solution :-

Given,

» First term of the A.P. = a = 1

» Second term of the A.P. = a₂ = 4

» Third term of the A.P. = a₃ = 7

» Common Difference, d = a₂ - a = 4 - 1 = 3

» nₜₕ term = x

» Sₙ = 287

_____________________________________________

~ For the value of n ::

We know that,

\\\;\;\displaystyle{\sf{:\rightarrow\;\;S_{n}\;=\;\bf{\dfrac{n}{2}\;[2a\;+\;(n\;-\;1)d]}}}

By applying the values here, we get,

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;\dfrac{n}{2}\;[2(1)\;+\;(n\;-\;1)(3)]\;=\;\bf{287}}}

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;\dfrac{n}{2}\;[2\;+\;3n\;-\;3]\;=\;\bf{287}}}

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;\dfrac{n}{2}\;[3n\;-\;1]\;=\;\bf{287}}}

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;n\;[3n\;-\;1]\;=\;\bf{287\;\times\;2}}}

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;3n^{2}\;-\;n\;=\;\bf{574}}}

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;3n^{2}\;-\;n\;-\;574\;=\;\bf{0}}}

This forms a Quadratic Equation. Using the method of Splitting the Middle Term, we get,

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;3n(n\;-\;14)\;-\;41(n\;-\;14)\;=\;\bf{0}}}

Since, 574 = 14 × 41

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;(3n\;-\;41)(n\;-\;14)\;=\;\bf{0}}}

Here,

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;\tt{either}\;\;\sf{(3n\;-\;41)}\;=\;\bf{0}\;\quad\;\tt{or}\;\;\sf{(n\;-\;14)}\;=\;\bf{0}}}

Then,

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;\sf{3n}\;=\;\bf{41}\;\quad\;\tt{or}\;\;\sf{n}\;=\;\bf{14}}}

\\\;\;\displaystyle{\sf{:\Rightarrow\;\;\sf{n}\;=\;\bf{\dfrac{41}{3}}\;\quad\;\tt{or}\;\;\sf{n}\;=\;\bf{14}}}

Here we got two values of n. We know that, n cannot be negative since its the number of term in sequence. Then,

\\\;\;\displaystyle{\underline{\bf{:\Rightarrow\;\;n\;=\;\bf{\green{14}}}}}

_____________________________________________

~ For the value of x ::

We know that, nₜₕ term is x. And we have the required values to find the nₜₕ term. This means 14th term is x.

Then,

\\\;\displaystyle{\sf{:\mapsto\;\;a_{n}\;=\;\bf{a\;+\;(n\;-\;1)d}}}

\\\;\displaystyle{\sf{:\mapsto\;\;x\;=\;\bf{1\;+\;(14\;-\;1)(3)}}}

\\\;\displaystyle{\sf{:\mapsto\;\;x\;=\;\bf{1\;+\;(13)(3)}}}

\\\;\displaystyle{\sf{:\mapsto\;\;x\;=\;\bf{1\;+\;39}}}

\\\;\displaystyle{\underline{\bf{:\mapsto\;\;x\;=\;\bf{\purple{40}}}}}

\\\;\underline{\boxed{\tt{The\;\;value\;\;of\;\;x\;=\;\bf{\blue{40}}}}}

_____________________________________________

More to know :-

\\\;\sf{\leadsto\;\;S_{n}\;=\;\dfrac{n}{2}\:[n\;+\;1]}

\\\;\sf{\leadsto\;\;l\;=\;a\;+\;(n\;-\;1)(-d)}

\\\;\sf{\leadsto\;\;Arithmetic\;Mean\;=\;\dfrac{a\;+\;b}{2}}

\\\;\sf{\leadsto\;\;S_{n}\;=\;\dfrac{n}{2}\:[a_{n}\;+\;a]}

Answered by Anonymous
1

Answer:

sorry I don't know what is your answer.......

Similar questions