Math, asked by miteshpatelmcpatel36, 10 months ago

Solve the question by substitution method.Find X and Y​

Attachments:

Answers

Answered by codiepienagoya
0

Given:

\frac{x}{2} +y = 0.8\\\\\frac{7}{x+\frac{7}{2}} = 5\\

To prove:

Find x and y by substitution method.

Solution:

\rightarrow \frac{x}{2} +y = 0.8....(i) \\\\ \rightarrow \frac{7}{x+\frac{7}{2}} = 5...(ii)\\\\

Solve equation (ii) and put the value of equation (a) in equation (i):

\rightarrow \bold {\frac{7}{x+\frac{y}{2}} = 5}\\\\\rightarrow  \frac{7}{5} = x+\frac{y}{2} \\\\ \rightarrow  \frac{7}{5} = \frac{2x+y}{2} \\\\\rightarrow  \frac{14}{5} =  2x+y \\\\\rightarrow  2x+y = 2.8\\\\\rightarrow  y = 2.8-2x ......(a)\\\\

Equation (i)

\bold {\rightarrow \frac{x}{2}+y =0.8}\\\\\rightarrow \frac{x+2y}{2} =0.8\\\\\rightarrow x+2y =1.6\\\\

putting the value:

\rightarrow x+2(2.8-2x) =1.6\\\\\rightarrow x+ 5.6-4x =1.6\\\\\rightarrow  5.6 -1.6= 3x\\\\\rightarrow  4.0= 3x\\\\\rightarrow  x= \frac{4}{3}\\\\\rightarrow  x= 1.33\\\\

put the value of x in equation a:

equation:

\rightarrow  \bold{y = 2.8-2x}\\\\\rightarrow  y = 2.8-2(1.33)\\\\\rightarrow  y = 2.8-2.66\\\\\rightarrow  y = 0.14\\

The final value of x and y is  "1.33" and "0.14".

Similar questions