Math, asked by Anonymous, 19 days ago

Solve the question given in attachment
Don't dare to spam​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:a_1,a_2,a_3, -  -  - ,a_n \: are \: in \: AP \: and \: a_i > 0}

Let assume that common difference of an AP is d

So, it implies

\rm :\longmapsto\:a_2 - a_1 = d

\rm :\longmapsto\:a_3 - a_2 = d

\rm :\longmapsto\:a_4- a_3 = d

.

.

.

.

\rm :\longmapsto\:a_n- a_{n - 1} = d

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{a_1}  +  \sqrt{a_2} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{a_1}  +  \sqrt{a_2} } \times \dfrac{ \sqrt{a_1}  -  \sqrt{a_2} }{ \sqrt{a_1}  -  \sqrt{a_2} }

\rm \:  =  \: \dfrac{ \sqrt{a_1} -  \sqrt{a_2}  }{a_1 - a_2}

\rm \:  =  \: \dfrac{ \sqrt{a_1} -  \sqrt{a_2}  }{ - d}

\rm \:  =  \: \dfrac{ \sqrt{a_2} -  \sqrt{a_1}  }{ d}

Thus,

\rm \: \dfrac{1}{ \sqrt{a_1}  +  \sqrt{a_2} }  =  \: \dfrac{ \sqrt{a_2} -  \sqrt{a_1}  }{ d}

Similarly,

\rm \: \dfrac{1}{ \sqrt{a_2}  +  \sqrt{a_3} }  =  \: \dfrac{ \sqrt{a_3} -  \sqrt{a_2}  }{ d}

.

.

.

.

\rm \: \dfrac{1}{ \sqrt{a_{n - 1}}  +  \sqrt{a_n} }  =  \: \dfrac{ \sqrt{a_n} -  \sqrt{a_{n - 1}}  }{ d}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{a_1}  +  \sqrt{a_2} } + \dfrac{1}{ \sqrt{a_2}  +  \sqrt{a_3} } +  -  -  -  + \dfrac{1}{ \sqrt{a_{n - 1}}  +  \sqrt{a_n} }

\rm \:  =  \: \dfrac{ \sqrt{a_2} -  \sqrt{a_1}  }{ d}  + \dfrac{ \sqrt{a_3} -  \sqrt{a_2}  }{ d}  +  -  -  + \dfrac{ \sqrt{a_n} -  \sqrt{a_{n - 1}}  }{ d}

\rm \:  =  \: \dfrac{1}{d}\bigg( \sqrt{a_2}   -  \sqrt{a_1}  +  \sqrt{a_3}  -  \sqrt{a_2} +  -  -  +  \sqrt{a_n} -  \sqrt{a_{n - 1}}   \bigg)

\rm \:  =  \: \dfrac{1}{d}\bigg( \sqrt{a_n}   -  \sqrt{a_1}     \bigg)

On rationalizing the numerator, we get

\rm \:  =  \: \dfrac{ \sqrt{a_n}  -  \sqrt{a_1} }{d}  \times \dfrac{ \sqrt{a_n}  +  \sqrt{a_1} }{ \sqrt{a_n} +  \sqrt{a_1}  }

\rm \:  =  \: \dfrac{ a_n - a_1 }{d[ \sqrt{a_n}  +  \sqrt{a_1}]}

\rm \:  =  \: \dfrac{ a + (n - 1)d - a }{d[ \sqrt{a_n}  +  \sqrt{a_1}]}

\rm \:  =  \: \dfrac{ (n - 1)d}{d[ \sqrt{a_n}  +  \sqrt{a_1}]}

\rm \:  =  \: \dfrac{ n - 1}{ \sqrt{a_n}  +  \sqrt{a_1}}

Hence, Proved

Similar questions