Math, asked by Raghav362002, 1 year ago

solve the question of integration of class 11th

Attachments:

Answers

Answered by Anonymous
1
Heyy !
____________________________________________________________

 \int\limits^2_1 {(4x^3-5x^2+6x+9)} \, dx

as we know , 

 \int\limits {(u+v)} \, dx =\int (u )dx + \int (v) dx
____________________________________________________________

\int (4x^3) dx - \int (5x^2) dx  + \int(6x) dx +\int 9dx

 \frac{4x^4}{4} - \frac{5x^3}{3} +  \frac{6x^2}{2} + 9x

 \frac{6x^4 - 10 x^3 + 18x^2 + 54 x}{6}

 \frac{3x^4 -5x^3 +9x^2 + 27 x}{3} + C
___________________________________________________
Definite integration :
put the values of x = 2 and x = 1 
__________________________________________________
x = 2 

 \frac{48 - 40 + 36 + 54}{3}

 \frac{98}{3}
__________________________________________________
x = 1 
= 34/3 
__________________________________________________
Definite integration = 98/3 - 34/3 
                                    = 64/3
_________________________________________________



Raghav362002: what's the final answer.?
Raghav362002: ??
Anonymous: let me edit bro
Raghav362002: kk
Anonymous: now see :)
pankaj12je: bruh chk u r answer !
Answered by pankaj12je
0
Hey there !!!!

 \int\limits^2_1 {4x^3-5x^2+6x+9 } \, dx --- Equation 1

Integrating by splitting equation 1

 \int\limits^2_1 {4x^3} \, dx  - \int\limits^2_1 {5x^2} \,  dx + \int\limits^2_1 {6x} \, dx + \int\limits^2_1 {9} \, dx

=((4x^4/4  -5x^3/3 +6x^2/2+9x) ^{2} _{1} ---- Equation 2
Substituting lower and upper limits in equation 2

=( (2)⁴-5*(2)³/3+3(2)²+18)-(1-5/3+3+9)

=16-40/3+12+18-1+5/3-12

=33-40/3+5/3

=33-35/3

=(33*3-35)/3=(99-35)/3=64/3

Hope this helped you !!!!
Similar questions