Math, asked by mona97554, 11 months ago

solve the question plz.....​

Attachments:

Answers

Answered by Fifth
0

HELLO

HOPE THIS HELPS

PLEASE MARK AS BRAINLIEST

Attachments:
Answered by Anonymous
3

Question :-

If 4^(x + 1) - 4^x = 24, then find the value of (2x)^x is :

(a) 2√3

(b) 3√3

(c) 4√3

(d) √3

Answer :-

Value of (2x)^x is (b) 3√3

Explanation :-

 \mathsf{ 4^{x + 1} - 4^x = 24 } \\  \\  \\  \implies  \mathsf{ 4^x( 4^{1}) -  4^x = 24 } \\  \\  \\

 \boxed{\boxed{ \bf \because  {a}^{m + n}  =  {a}^{m} \times  {a}^{n}  }} \\  \\  \\

 \mathsf{ \implies4^x( 4) -  4^x = 24 } \\  \\  \\

Taking 4^x common

 \mathsf{ \implies4^x( 4 - 1) = 24 } \\  \\  \\

 \mathsf{ \implies4^x(3) = 24 } \\  \\  \\

 \mathsf{ \implies4^x=  \dfrac{24}{3} } \\  \\  \\

 \mathsf{ \implies 4^x= 8 } \\  \\  \\

 \mathsf{ \implies (2^2)^x=  {2}^{3}  } \\  \\  \\

 \mathsf{ \implies 2^{2x}=  {2}^{3}  } \\  \\  \\

 \boxed{\boxed{ \bf \because  ({a}^{m} )^{n}  =  {a}^{mn}}} \\  \\  \\

If bases are equal we can equate powers

 \mathsf{ \implies 2x = 3 } \\  \\  \\

 \mathsf{ \implies x =  \dfrac{3}{2}  } \\  \\  \\

Now, (2x)^x

 \mathsf{  ( 2x)^x} \\  \\  \\

 \mathsf{  = [2( \dfrac{3}{2})  ]^{ \dfrac{3}{2} } }\\  \\  \\

 \mathsf{  = 3^{ \dfrac{3}{2} } }\\  \\  \\

Writing it in Radical form

 \mathsf{  =  \sqrt{ {3}^{3} }  }\\  \\  \\

 \mathsf{  =  \sqrt{27}  }\\  \\  \\

 \mathsf{  =  \sqrt{9 \times 3}  }\\  \\  \\

 \mathsf{  =   \sqrt{9}  \times  \sqrt{3}  }\\  \\  \\

 \mathsf{  = 3 \times  \sqrt{3}  }\\  \\  \\

 \mathsf{  = 3\sqrt{3}  }\\  \\  \\

Hence, the value of (2x)^x is 3√3

Similar questions