Math, asked by dograsachit500, 6 months ago

solve the question seen in the attachment

are yar dedo please ☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹☹​

Attachments:

Answers

Answered by brainlyofficial11
28

Solution :-

SSS congruence rule = side - side - side

  • if all three sides of two triangles are equal to each other, then the traingles are congruent by SSS congruency rule

CPCT : Corresponding parts of congruent triangles

  • two or more triangles are congruent, then all of their corresponding angles and sides are congruent as well

__________________________

(i) prove that ∆ABM ≅ ∆ACM

in ∆ABM and ∆ACM

  • AB = AC (given)
  • BM = CM (given)
  • AM = AM (common)

so, ∆ABM ≅ ∆ACM by SSS congruency rule

_______________________

(ii) find ∠CAM

we have, ∆ABM ≅ ∆ACM

➪ ∠CAM =∠BAM (by CPCT)

  \bold{: \implies  \boxed{  \orange{\bold{∠CAM = 25 \degree}}}}

_______________________

(iii) find ∠ABM

we have, ∆ABM ≅ ∆ACM

➪ ∠ABM =∠ACM (by CPCT)

  :   \implies \boxed{ \orange{\bold{∠ABM = 65 \degree }}}

________________________

(iv) Find ∠AMC

now, in ∆AMC

★ by using angles sum property of a triangle

  • sum of all interior angles of a triangle is equal to 180°

 \bold{ : \implies ∠CAM + ∠ACM + ∠AMC = 180 \degree } \\  \\  \bold{:  \implies25 \degree + 65 \degree +∠AMC = 180 \degree  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies 90 \degree +∠AMC = 180 \degree } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies ∠AMC = 180 \degree - 90 \degree } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies \boxed{ \orange{ \bold{∠AMC = 90 \degree}}}  }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Attachments:
Answered by Anonymous
1

Answer:

SSS congruence rule = side - side - side

if all three sides of two triangles are equal to each other, then the traingles are congruent by SSS congruency rule

CPCT : Corresponding parts of congruent triangles

two or more triangles are congruent, then all of their corresponding angles and sides are congruent as well

__________________________

(i) prove that ∆ABM ≅ ∆ACM

in ∆ABM and ∆ACM

AB = AC (given)

BM = CM (given)

AM = AM (common)

so, ∆ABM ≅ ∆ACM by SSS congruency rule

_______________________

(ii) find ∠CAM

we have, ∆ABM ≅ ∆ACM

➪ ∠CAM =∠BAM (by CPCT)

\bold{: \implies \boxed{ \orange{\bold{∠CAM = 25 \degree}}}}:⟹

∠CAM=25°

_______________________

(iii) find ∠ABM

we have, ∆ABM ≅ ∆ACM

➪ ∠ABM =∠ACM (by CPCT)

: \implies \boxed{ \orange{\bold{∠ABM = 65 \degree }}}:⟹

∠ABM=65°

________________________

(iv) Find ∠AMC

now, in ∆AMC

★ by using angles sum property of a triangle

sum of all interior angles of a triangle is equal to 180°

\begin{gathered} \bold{ : \implies ∠CAM + ∠ACM + ∠AMC = 180 \degree } \\ \\ \bold{: \implies25 \degree + 65 \degree +∠AMC = 180 \degree } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{: \implies 90 \degree +∠AMC = 180 \degree } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{: \implies ∠AMC = 180 \degree - 90 \degree } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{: \implies \boxed{ \orange{ \bold{∠AMC = 90 \degree}}} }\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

:⟹∠CAM+∠ACM+∠AMC=180°

:⟹25°+65°+∠AMC=180°

:⟹90°+∠AMC=180°

:⟹∠AMC=180°−90°

:⟹

∠AMC=90°

Similar questions