Math, asked by vishu126191, 1 day ago

solve the question step by step​

Attachments:

Answers

Answered by anindyaadhikari13
2

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I = \int \sqrt{1 +  \sec(x) }  \: dx

Can be written as:

 \displaystyle \rm \longrightarrow I = \int \sqrt{ \dfrac{ \{1 +  \sec(x) \} \{1 -  \sec(x)  \}}{1 -  \sec(x) } }  \: dx

 \displaystyle \rm \longrightarrow I = \int \sqrt{ \dfrac{ \{\sec(x)  + 1\} \{\sec(x) - 1\}}{\sec(x) - 1}}  \: dx

 \displaystyle \rm \longrightarrow I = \int \sqrt{ \dfrac{\sec^{2} (x)  - 1}{\sec(x) - 1}}  \: dx

 \displaystyle \rm \longrightarrow I = \int \sqrt{ \dfrac{\tan^{2} (x)}{\sec(x) - 1}}  \: dx

 \displaystyle \rm \longrightarrow I = \int \dfrac{\tan(x)}{ \sqrt{\sec(x) - 1}}  \: dx

Let us assume that:

 \rm \longrightarrow u = \sqrt{ \sec(x) - 1}

 \rm \longrightarrow {u}^{2}  = \sec(x) - 1

 \rm \longrightarrow 2u \dfrac{du}{dx} = \sec(x)  \tan(x)

 \rm \longrightarrow dx =\dfrac{2u \:du}{ \sec(x)  \tan(x)}

So, the integral changes to:

 \displaystyle \rm \longrightarrow I = \int \dfrac{\tan(x)}{u} \times \dfrac{2u \: du}{ \sec(x)  \tan(x) }

 \displaystyle \rm \longrightarrow I = 2\int\dfrac{ du}{ \sec(x)}

 \displaystyle \rm \longrightarrow I = 2\int\dfrac{ du}{ {u}^{2} +  {1}^{2}  }

 \displaystyle \rm \longrightarrow I = 2 \tan^{ - 1}(u) + C

Substituting back the value of u, we get:

 \displaystyle \rm \longrightarrow I = 2 \tan^{ - 1}( \sqrt{ \sec(x) - 1 } ) + C

Therefore:

 \displaystyle \rm \longrightarrow \int \sqrt{1 +  \sec(x) }  \: dx =  2 \tan^{ - 1}( \sqrt{ \sec(x) - 1 } ) + C

★ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}


anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions