Math, asked by vishu126191, 16 days ago

solve the question step by step​

Attachments:

Answers

Answered by anindyaadhikari13
2

Solution:

Given Integral:

\displaystyle\rm\longrightarrow I=\int\dfrac{\sin(2x)}{sin^{4}(x)+cos^{4}(x)}\:dx

We know that:

\rm\longrightarrow \sin(2x)=2\sin(x)\cos(x)

\rm\longrightarrow\sin(x)=\dfrac{\sin(x)}{\cos(x)}\times\cos(x)=\tan(x)\cos(x)=\dfrac{\tan(x)}{\sec(x)}

\rm\longrightarrow\cos(x)=\dfrac{1}{\sec(x)}

Using this result, we get:

\displaystyle\rm\longrightarrow I=\int\dfrac{2\sin(x)\cos(x)}{\dfrac{tan^{4}(x)}{\sec^{4}(x)}+\dfrac{1}{\sec^{4}(x)}}\:dx

\displaystyle\rm\longrightarrow I=\int\dfrac{2\sin(x)\cos(x)}{\dfrac{tan^{4}(x)+1}{\sec^{4}(x)}}\:dx

\displaystyle\rm\longrightarrow I=\int\dfrac{sec^{4}(x)\cdot2\sin(x)\cos(x)}{tan^{4}(x)+1}\:dx

\displaystyle\rm\longrightarrow I=\int\dfrac{sec^{3}(x)\cdot2\sin(x)}{tan^{4}(x)+1}\:dx

\displaystyle\rm\longrightarrow I=\int\dfrac{sec^{2}(x)\cdot2\dfrac{\sin(x)}{\cos(x)}}{tan^{4}(x)+1}\:dx

\displaystyle\rm\longrightarrow I=\int\sec^{2}(x)\cdot\dfrac{2\tan(x)}{tan^{4}(x)+1}\:dx

Now, let us assume that:

\rm\longrightarrow u=\tan(x)

\rm\longrightarrow \dfrac{du}{dx}=\sec^{2}(x)

\rm\longrightarrow dx=\dfrac{du}{\sec^{2}(x)}

So, the integral changes to:

\displaystyle\rm\longrightarrow I=\int\sec^{2}(x)\cdot\dfrac{2u}{u^{4}+1}\cdot\dfrac{du}{\sec^{2}(x)}

\displaystyle\rm\longrightarrow I=\int\cdot\dfrac{2u\:du}{u^{4}+1}

Now, let us assume that:

\rm\longrightarrow t=u^{2}

\rm\longrightarrow dt=2u\:du

So, the integral changes to:

\displaystyle\rm\longrightarrow I=\int\cdot\dfrac{dt}{t^{2}+1}

\displaystyle\rm\longrightarrow I=tan^{-1}(t)+C

Substituting back the value of t, we get:

\displaystyle\rm\longrightarrow I=tan^{-1}(u^{2})+C

Substituting back the value of u, we get:

\displaystyle\rm\longrightarrow I=tan^{-1}(tan^{2}x)+C

Therefore:

\displaystyle\rm\longrightarrow\int\dfrac{\sin(2x)}{sin^{4}(x)+cos^{4}(x)}\:dx=tan^{-1}(tan^{2}x)+C

Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions