Math, asked by brainlyquestioner96, 4 months ago

solve the question✔✔✔✔



tan²theta / (sec theta-1) ²= 1+cos theta /1-cos theta ​

Answers

Answered by Anonymous
1

Answer:

o bhai ye question ha???

pls don't report pls follow

Answered by MRDEMANDING
27

Question: -

 \bf \implies \:    \dfrac{ { \tan( \theta) }^{2} }{ \sec( \theta  - 1)^{2}  }  =  \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) }

LHS:-

 \implies \sf \:    \dfrac{ \dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta } }{  \big(\dfrac{1}{cos \theta} - 1 \big)^{2}  }  =  \dfrac{   \dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta } }{ \dfrac{(1 - cos \theta)^{2} }{cos ^{2} }  \theta}

 \implies \sf \:  \dfrac{ {sin}^{2} \theta }{1 +  {cos}^{2}  \theta \:  - 2 \: cos \theta}

RHS:-

 \implies \sf  \dfrac{1 + cos \theta}{1 - cos \theta}  \times  \dfrac{1 - cos \theta}{1 - cos \theta}

 \implies \sf \:  \dfrac{1 - cos^{2}  \theta}{(1 - cos \theta)^{2} }  =  \dfrac{sin^{2}  \theta}{1 +  {cos}^{2}  \theta  - 2 cos  \theta}

LHS = RHS, hence proved!!

Similar questions