Math, asked by rsanjaysan43, 3 days ago

Solve the system of equation by Gauss –Jacobi me

thod.

27x + 6y – z = 85

6x + 15y + 2z = 72

x + y = 54z = 110​

Answers

Answered by sunita2012002
3

Answer:

answer

Step-by-step explanation:

mark me brillent

Attachments:
Answered by VaibhavSR
1

Answer:  x=\frac{85}{27},  y=\frac{24}{5} and  z=\frac{55}{27}.

Step-by-step explanation:

  • Given:

                   27x + 6y-z = 85\\6x + 15y + 2z = 72\\x + y + 54z = 110

  • To find: Value of x, y and z by Gauss-Jacobi method.
  • Solution:

         27x + 6y-z=85

     ⇒ 27x=85-6y+z

     ⇒ x=\frac{1}{27}[85-6y+z]

     Putting y=0 and z=0.

     ⇒ x=\frac{85}{27}

again,

         6x+15y+2z=72

     ⇒ 15y=72-6x-2z

     ⇒ y=\frac{1}{15}[72-6x-2z]

Putting x=0 and z=0.

     ⇒ y=\frac{72}{15}=\frac{24}{5}

again,

         x+y+54z=110

     ⇒ 54z=110-x-y

     ⇒ z=\frac{1}{54}[110-x-y]

Putting x=0 and y=0.

     ⇒ z=\frac{110}{54}=\frac{55}{27}

So, the value of  x=\frac{85}{27},  y=\frac{24}{5} and  z=\frac{55}{27}.

  • Hence, the values are as above.

#SPJ3

         

Similar questions