Solve the system of equation:
root x + y = 11 ,&
x + root y = 7
for real values of x, and y?
PLEASE DON'T SEND SOLUTION, I ALREADY KNOW THE SOLUTION THAT
x = 4
y = 9
ONLY SEND PROCESS!!!
IF YOU KNOW.......
Answers
Step-by-step explanation:
√x+y=11
x+√y= 7
from eq 1...
from eq 1...√y=7-x
from eq 1...√y=7-xy=(7-x)^2
from eq 1...√y=7-xy=(7-x)^2from eq 2...
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-y
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sides
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+24010=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+24010=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401x^4-28x^3+272x^2-1065x+1444=0
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+24010=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401x^4-28x^3+272x^2-1065x+1444=0from the rational root theorem, possible roots are factors of 1444
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+24010=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401x^4-28x^3+272x^2-1065x+1444=0from the rational root theorem, possible roots are factors of 14444 is a factor of 1444 and a root of the equation...
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+24010=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401x^4-28x^3+272x^2-1065x+1444=0from the rational root theorem, possible roots are factors of 14444 is a factor of 1444 and a root of the equation...256-1792+4352-4260+1444=0
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+24010=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401x^4-28x^3+272x^2-1065x+1444=0from the rational root theorem, possible roots are factors of 14444 is a factor of 1444 and a root of the equation...256-1792+4352-4260+1444=0-1536+4352-4260+1444=0
from eq 1...√y=7-xy=(7-x)^2from eq 2...√x=11-ysubstitute (7-x)^2 for y√x=11-(7-x)^2square both sidesx=121-22(7-x)^2+(7-x)^4(7-x)^4=(x-7)^2*(x-7)^2=(x^2-14x+49)(x^2-14x-49)=x^4-28x^3+294x^2-1372x+2401x=121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+24010=-x+121-22x^2+308x-1078+x^4-28x^3+294x^2-1372x+2401x^4-28x^3+272x^2-1065x+1444=0from the rational root theorem, possible roots are factors of 14444 is a factor of 1444 and a root of the equation...256-1792+4352-4260+1444=0-1536+4352-4260+1444=02816-4260+1444=0.
-1444+1444=0
-1444+1444=00=0
[Solved..]