Math, asked by ishikaawana8379, 1 year ago

Solve the system of equations : ax + by =1, bx + ay = 2ab/(a² + b²).

Answers

Answered by sharibPasha
1

Answer:

put the value of y in eq 1 , we get the value of x also

Attachments:
Answered by bestwriters
1

When the equations are solved, the value of \bold{x=\frac{a}{a^{2}+b^{2}}} and \bold{y=\frac{b}{a^{2}+b^{2}}}.

Given:

\bold{a x+b y-1=0}

\bold{b x+a y-\frac{2 a b}{a^{2}+b^{2}}=0}

Solution:

Here, the equation are solved by applying cross multiplication method.

The formula used to solve the equation is:

\bold{\frac{\mathrm{x}}{\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}}=\frac{\mathrm{y}}{\mathrm{c}_{1} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{a}_{1}}=\frac{1}{\mathrm{a}_{1} \mathrm{b}_{2}-\mathrm{a}_{2} \mathrm{b}_{1}}}

The values of the variables are:

\bold{a_{1}=a}

\bold{b_{1}=b}

\bold{c_{1}=-1}

\bold{a_{2}=b}

\bold{c_{2}=-\frac{2 a b}{a^{2}+b^{2}}}

On substituting the values in the formula, we get,

\bold{\frac{x}{(b)\left(-\frac{2 a b}{a^{2}+b^{2}}\right)-(a)(-1)}=\frac{y}{(-1)(b)-\left(-\frac{2 a b}{a^{2}+b^{2}}\right)(a)}=\frac{1}{(a)(a)-(b)(b)}}

\bold{\frac{\mathrm{x}}{\frac{\mathrm{a}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{\mathrm{a}^{2}+\mathrm{b}^{2}}}=\frac{\mathrm{y}}{\frac{\mathrm{b}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{\mathrm{a}^{2}+\mathrm{b}^{2}}}=\frac{1}{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}}

On equating, x and y separately, we get,

\bold{\frac{x}{\frac{a\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}}=\frac{1}{\left(a^{2}-b^{2}\right)}}

\bold{\frac{y}{\frac{b\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}}}=\frac{1}{\left(a^{2}-b^{2}\right)}}

Now, the values of x and y is:

\bold{x=\frac{a}{a^{2}+b^{2}}}

\bold{y=\frac{b}{a^{2}+b^{2}}}

Similar questions