Math, asked by PurvanshiAttri, 1 month ago

Solve the system of inequations
(x+3)/(x-2) <=2,(2x+5)/(x+7)>=3​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given system of in-equations are

\rm :\longmapsto\:\dfrac{x + 3}{x - 2}  \leqslant 2

and

\rm :\longmapsto\:\dfrac{2x + 5}{x + 7}  \geqslant 3

Consider,

\rm :\longmapsto\:\dfrac{x + 3}{x - 2}  \leqslant 2

\rm :\longmapsto\:\dfrac{x + 3}{x - 2}  - 2 \leqslant 0 \:  \: and \: x \:  \ne \: 2

\rm :\longmapsto\:\dfrac{x + 3 -2 x + 4}{x - 2} \leqslant 0 \:  \: and \: x \:  \ne \: 2

\rm :\longmapsto\:\dfrac{ - x + 7}{x - 2} \leqslant 0 \:  \: and \: x \:  \ne \: 2

\rm :\longmapsto\:\dfrac{x  - 7}{x - 2} \geqslant 0 \:  \: and \: x \:  \ne \: 2

We know,

If a < b

\boxed{ \bf{ \:  \frac{x - a}{x - b} \geqslant 0 \: \bf\implies \:x \leqslant a \:or \:  x &gt;  b}}

So, using this,

\bf\implies \:x &lt; 2 \:  \: or \:  \: x \geqslant 7 -  -  - (1)

Consider,

\rm :\longmapsto\:\dfrac{2x + 5}{x + 7}  \geqslant 3

\rm :\longmapsto\:\dfrac{2x + 5}{x + 7}   - 3\geqslant 0 \:  \:  \: and \: x \:  \ne \:  - 7

\rm :\longmapsto\:\dfrac{2x + 5 - 3x - 21}{x + 7} \geqslant 0 \:  \:  \: and \: x \:  \ne \:  - 7

\rm :\longmapsto\:\dfrac{- x - 16}{x + 7} \geqslant 0 \:  \:  \: and \: x \:  \ne \:  - 7

\rm :\longmapsto\:\dfrac{-( x + 16)}{x + 7} \geqslant 0 \:  \:  \: and \: x \:  \ne \:  - 7

\rm :\longmapsto\:\dfrac{x + 16}{x + 7} \leqslant 0 \:  \:  \: and \: x \:  \ne \:  - 7

We know,

If a < b

\boxed{ \bf{ \:  \frac{x - a}{x - b} \leqslant 0 \: \bf\implies \:a \leqslant x &lt; b}}

So, using this,

\bf\implies \   - 16 \leqslant x &lt;  - 7 -  -  - (2)

From equation (1) and (2), we concluded that

\bf\implies \:x \:  \in \:  [-  16 , - 7)

Answered by lohitjinaga
0

Answer:

\large\underline{\sf{Solution-}}Solution−</p><p></p><p>Given system of in-equations are</p><p></p><p>\rm :\longmapsto\:\dfrac{x + 3}{x - 2} \leqslant 2:⟼x−2x+3⩽2</p><p></p><p>and</p><p></p><p>\rm :\longmapsto\:\dfrac{2x + 5}{x + 7} \geqslant 3:⟼x+72x+5⩾3</p><p></p><p>Consider,</p><p></p><p>\rm :\longmapsto\:\dfrac{x + 3}{x - 2} \leqslant 2:⟼x−2x+3⩽2</p><p></p><p>\rm :\longmapsto\:\dfrac{x + 3}{x - 2} - 2 \leqslant 0 \: \: and \: x \: \ne \: 2:⟼x−2x+3−2⩽0andx=2</p><p></p><p>\rm :\longmapsto\:\dfrac{x + 3 -2 x + 4}{x - 2} \leqslant 0 \: \: and \: x \: \ne \: 2:⟼x−2x+3−2x+4⩽0andx=2</p><p></p><p>\rm :\longmapsto\:\dfrac{ - x + 7}{x - 2} \leqslant 0 \: \: and \: x \: \ne \: 2:⟼x−2−x+7⩽0andx=2</p><p></p><p>\rm :\longmapsto\:\dfrac{x - 7}{x - 2} \geqslant 0 \: \: and \: x \: \ne \: 2:⟼x−2x−7⩾0andx=2</p><p></p><p>We know,</p><p></p><p>If a &lt; b</p><p></p><p>\boxed{ \bf{ \: \frac{x - a}{x - b} \geqslant 0 \: \bf\implies \:x \leqslant a \:or \: x &gt; b}}x−bx−a⩾0⟹x⩽aorx&gt;b</p><p></p><p>So, using this,</p><p></p><p>\bf\implies \:x &lt; 2 \: \: or \: \: x \geqslant 7 - - - (1)⟹x&lt;2orx⩾7−−−(1)</p><p></p><p>Consider,</p><p></p><p>\rm :\longmapsto\:\dfrac{2x + 5}{x + 7} \geqslant 3:⟼x+72x+5⩾3</p><p></p><p>\rm :\longmapsto\:\dfrac{2x + 5}{x + 7} - 3\geqslant 0 \: \: \: and \: x \: \ne \: - 7:⟼x+72x+5−3⩾0andx=−7</p><p></p><p>\rm :\longmapsto\:\dfrac{2x + 5 - 3x - 21}{x + 7} \geqslant 0 \: \: \: and \: x \: \ne \: - 7:⟼x+72x+5−3x−21⩾0andx=−7</p><p></p><p>\rm :\longmapsto\:\dfrac{- x - 16}{x + 7} \geqslant 0 \: \: \: and \: x \: \ne \: - 7:⟼x+7−x−16⩾0andx=−7</p><p></p><p>\rm :\longmapsto\:\dfrac{-( x + 16)}{x + 7} \geqslant 0 \: \: \: and \: x \: \ne \: - 7:⟼x+7−(x+16)⩾0andx=−7</p><p></p><p>\rm :\longmapsto\:\dfrac{x + 16}{x + 7} \leqslant 0 \: \: \: and \: x \: \ne \: - 7:⟼x+7x+16⩽0andx=−7</p><p></p><p>We know,</p><p></p><p>If a &lt; b</p><p></p><p>\boxed{ \bf{ \: \frac{x - a}{x - b} \leqslant 0 \: \bf\implies \:a \leqslant x &lt; b}}x−bx−a⩽0⟹a⩽x&lt;b</p><p></p><p>So, using this,</p><p></p><p>\bf\implies \ - 16 \leqslant x &lt; - 7 - - - (2)⟹ −16⩽x&lt;−7−−−(2)</p><p></p><p>From equation (1) and (2), we concluded that</p><p></p><p>\bf\implies \:x \: \in \: [- 16 , - 7)⟹x∈[−16,−7)</p><p>

Similar questions